项目名称: 利用基因振荡回路合成PHBV嵌段式共聚物的基础研究

项目编号: No.31200033

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 微生物学、植物学

项目作者: 王倩

作者单位: 山东大学

项目金额: 25万元

中文摘要: 利用合成生物学手段对生物体进行有目的的改造,从而解决生物医药、能源及生物基材料等领域的重大疑难问题是现阶段重点突破的关键技术之一。而聚3羟基丁酸3羟基戊酸酯(简称PHBV)嵌段式共聚物因其更优越的性能是聚合物生物合成中最富有意义且具有挑战性的研究工作之一。本项目首次将合成生物学中的基因回路引入了大肠杆菌PHBV嵌段式合成中,将群体感应模块LuxI/LuxR,信号分子降解酶AiiA和3HV合成中的关键酶IlvA元件组装成振荡器,植入经改造的大肠杆菌"底盘"中,利用信号分子浓度的周期变化振荡调节IlvA的表达,进而调节共聚物中3HV的链段式掺入,产生由基因程式控制合成的嵌段式PHBV。利用酶活检测及代谢物检测,揭示振荡回路与PHBV嵌段式共聚物合成的关系;并通过表征嵌段式共聚物的结构与性能,阐明嵌段共聚物的分布规律和分子基础;同时优化调整基因回路,为改善PHBV嵌段共聚物的组成奠定基础。

中文关键词: PHBV;基因振荡器;大肠杆菌;群体感应;

英文摘要: One of the key breakthrough technologies at present is reconstructing organism purposively by using synthetic biology to solve the major issues in biomedicine, biofuel and biomaterial fields. The superior performance of PHBV block copolymer made it one of the significant and challenged researches in copolymer biosynthesis. This study for the first time introduces gene circuits from synthetic biology into PHBV block copolymer biosynthesis in Escherichia coli. We use these biological parts and modules: LuxI/LuxR quorum sensing system, AHL degrading enzyme AiiA, threonine dehydratase IlvA, to assembly modules and gene oscillator on well-characterized chassis, generating program-controlled synthetic PHBV block copolymer. The relationship between gene oscillator and PHBV block copolymer biosynthesis can be discovered by analysis of enzyme activity and metabolic intermediates. The distribution rule and the molecular foundation of the block copolymer can be clarified by detecting its structure and performance function. Optimizing the gene circuit will be the groundwork for improving the composition of the PHBV block copolymer.

英文关键词: PHBV;gene oscillator;Escherichia coli;quorum sensing;

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】基于样例查询机制的在线动作检测
专知会员服务
9+阅读 · 2022年3月23日
基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
WWW2022 | 迷途知返:分布迁移下的图神经网络自训练方法
专知会员服务
16+阅读 · 2022年2月19日
神经网络的基础数学
专知会员服务
201+阅读 · 2022年1月23日
专知会员服务
60+阅读 · 2021年9月20日
专知会员服务
18+阅读 · 2021年8月15日
【ICLR2021】通过多种自监督方式提升GAT中注意力
专知会员服务
43+阅读 · 2021年2月27日
专知会员服务
32+阅读 · 2021年2月21日
人工智能预测RNA和DNA结合位点,以加速药物发现
AI从底物和酶的结构中预测米氏常数,量化酶活性
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月19日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关主题
相关VIP内容
【CVPR2022】基于样例查询机制的在线动作检测
专知会员服务
9+阅读 · 2022年3月23日
基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
WWW2022 | 迷途知返:分布迁移下的图神经网络自训练方法
专知会员服务
16+阅读 · 2022年2月19日
神经网络的基础数学
专知会员服务
201+阅读 · 2022年1月23日
专知会员服务
60+阅读 · 2021年9月20日
专知会员服务
18+阅读 · 2021年8月15日
【ICLR2021】通过多种自监督方式提升GAT中注意力
专知会员服务
43+阅读 · 2021年2月27日
专知会员服务
32+阅读 · 2021年2月21日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员