We introduce an independence criterion based on entropy regularized optimal transport. Our criterion can be used to test for independence between two samples. We establish non-asymptotic bounds for our test statistic and study its statistical behavior under both the null hypothesis and the alternative hypothesis. The theoretical results involve tools from U-process theory and optimal transport theory. We also offer a random feature type approximation for large-scale problems, as well as a differentiable program implementation for deep learning applications. We present experimental results on existing benchmarks for independence testing, illustrating the interest of the proposed criterion to capture both linear and nonlinear dependencies in synthetic data and real data.
翻译:我们引入了基于加密常规化最佳运输的独立标准。 我们的标准可以用来测试两个样本的独立性。 我们为测试统计建立了非无药可依的界限,并根据无效假设和替代假设研究其统计行为。 理论结果涉及来自U- process理论和最佳运输理论的工具。 我们还为大规模问题提供了随机特征类型近似,并为深层学习应用提供了不同的程序实施。 我们介绍了关于独立测试现有基准的实验结果,表明了在合成数据和真实数据中捕捉线性和非线性依赖性的拟议标准的兴趣。