项目名称: 类竹节状超高分子量聚乙烯纤维复合增强体制备及其复合材料强化机制研究

项目编号: No.51203080

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 有机高分子材料学科

项目作者: 李微微

作者单位: 宁波大学

项目金额: 25万元

中文摘要: 纤维形态设计在纤维增强复合材料研究中日益受到重视。对于超高分子量聚乙烯纤维而言,却在微观层面上缺乏对纤维形态的创新性设计,导致相应的异形界面复合材料研究处于空白。本项目采用复合表面改性技术制备一种新型的类竹节状超高分子量聚乙烯纤维增强体,这种纤维形态设计思想及复合改性技术具有原创性,可为异形界面超高分子量聚乙烯纤维增强复合材料的研究提供素材。本研究结合液相氧化改性和熔体晶体生长技术,利用氧化处理可引入含氧官能团促进晶体生长的优势,在纤维表面生长出形貌可变、疏密可控、尺寸可调的聚合物晶体,与超高分子量聚乙烯纤维组成复合结构,并揭示该结构的形成机理,进而扩展仿生纤维的设计思路,促进其制备工艺的开发。制备类竹节状超高分子量聚乙烯纤维增强复合材料,在材料界面中引入形状、尺寸因素,考察微观界面结构对复合材料机械性能的影响,揭示该类异形增强体的强化机理,丰富并完善复合材料界面层理论。

中文关键词: 超高分子量聚乙烯纤维;液相氧化;溶液晶体生长;复合材料;强化机制

英文摘要: Fiber morphology design has attracted increased attention in the field of composite technology. In terms of ultra-high molecular weight polyethylene (UHMWPE) fiber composite, however, there is no published effort on the microscopic fiber shape and morphology design. Therefore, the understanding of the potential strengthening effect of these special-shaped fibers and its interfacial mechanism is still lacking. In this project, the preparation of the bamboo-shaped fibers will be achieved by liquid phase oxidation of the fiber surface followed by melt crystal growth technology. In the oxidation process, the oxygen-containing groups are introduced on the fiber surface which may promote the crystal growth. Polymer crystals grow on the fiber surface with variable morphology, density and size, and these parameters can be controlled by different growing condition. In the study, the formation mechanism of bamboo-shaped ultra-high molecular weight polyethylene fiber reinforcement and the strengthening mechanism of its composites will also be revealed. The study should extend the design idea of bionic fibers and promote the development of its preparation process, and enrich the interface theory of composites.

英文关键词: Ultra-high molecular weight polyethylene fiber;Liquid phase oxidation;Solution crystal growth;Composite;Strengthening mechanism

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
26+阅读 · 2021年9月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
15+阅读 · 2020年11月8日
人机对抗智能技术
专知会员服务
202+阅读 · 2020年5月3日
新时期我国信息技术产业的发展
专知会员服务
70+阅读 · 2020年1月18日
机器的猜想与边界
机器之心
0+阅读 · 2021年12月23日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
17+阅读 · 2022年1月11日
Arxiv
25+阅读 · 2021年3月20日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Arxiv
11+阅读 · 2018年1月15日
小贴士
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
26+阅读 · 2021年9月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
15+阅读 · 2020年11月8日
人机对抗智能技术
专知会员服务
202+阅读 · 2020年5月3日
新时期我国信息技术产业的发展
专知会员服务
70+阅读 · 2020年1月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员