This paper investigates whether the power of the models pre-trained on text data, such as BERT, can be transferred to general token sequence classification applications. To verify pre-trained models' transferability, we test the pre-trained models on text classification tasks with meanings of tokens mismatches, and real-world non-text token sequence classification data, including amino acid, DNA, and music. We find that even on non-text data, the models pre-trained on text converge faster, perform better than the randomly initialized models, and only slightly worse than the models using task-specific knowledge. We also find that the representations of the text and non-text pre-trained models share non-trivial similarities.
翻译:本文探讨在文本数据(如BERT)上经过预先训练的模型的力量是否可以转移到一般象征性序列分类应用。为了核查经过训练的模型的可转让性,我们测试了经过训练的文本分类任务模型,其含义是象征物不匹配,以及现实世界的非文本象征性序列分类数据,包括氨基酸、DNA和音乐。我们发现,即使在非文本数据方面,经过预先训练的模型在文本上会合得更快,比随机初始化模型表现得更好,而且仅比使用特定任务知识的模型稍差一点。我们还发现,文本和非文本事先训练的模型的表述具有非三重相似性。