项目名称: 限域空间内诱导构筑二维超薄HxMoO3/石墨烯复合材料、电化学性能及构效关系

项目编号: No.51462007

项目类型: 地区科学基金项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 王海

作者单位: 桂林理工大学

项目金额: 47万元

中文摘要: MoO3因具有较高的理论比容量并且资源丰富而成为一种极具开发潜力的锂离子电池负极材料。然而,较低的电子和离子传导速率严重限制了MoO3负极材料的倍率性能和循环性能。本项目提出以H掺杂MoO3形成金属性HxMoO3,采用有机单体插层-限域空间原位聚合-聚合膨胀/剥离的方法构筑二维超薄HxMoO3/石墨烯复合材料的研究思路,通过工艺优化实现HxMoO3和石墨烯强化学耦合并达到增强该复合材料的电荷传输和离子扩散能力的目的,以解决常规MoO3和石墨烯机械复合导致的低电子、离子传导速率的问题。研究复合材料的组分和显微结构对其比容量、倍率性能和循环寿命的影响,揭示新型电极材料化学合成-微纳结构-储锂性能三者的构效关系。课题的实施为新型电化学储能材料和器件的组装、构建提供新的思路,且对其它具有层状结构的无机材料/石墨烯复合材料提供一种新颖且普适的合成路径。

中文关键词: 锂离子电池;HxMoO3;石墨烯;电化学性能;二维材料

英文摘要: MoO3 has attracted much attention as a potential anode material due to its relatively high theoretical capacity and abundant natural resources. However, its poor charge transport and ion diffusion severely limited its rate properties and cycling performance. To solve this issue, the strategies of using metallic HxMoO3 nanoribbons as Mo source that obtained by H-doped MoO3 and direct building two-dimensional ultrathin HxMoO3/Graphene composites are proposed in this project.In addition, for the low conductivity and ion diffusion coefficient of mechanical mixture of Graphene and MoO3, a corresponding strategy based on organic monomer intercalation-in-situ polymerization within confined space-polymerization expansion/exfoliation fabrication method will be presented in this project. The synthesis and optimization of strongly coupled HxMoO3/Graphene composites are an important prerequisite. The effects of composition and microstructure of composite materials on its specific capacity, rate capability and cycle life will be investigated systematically. Moreover, the relationship among chemical synthesis, micro-and nanostructures and lithium storage performance will be further revealed in this project. The successful implementation of this project will not only have a potential significance in fabricating novel electrochemical energy storage devices with superior electrochemical properties, but also are expected to provide an efficient general method to other layer inorganic materials/Graphene composites.

英文关键词: Lithium ion batteries;HxMoO3;Graphene;Electrochemical properties;Two-dimensional materials

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
12+阅读 · 2021年11月1日
小贴士
相关主题
相关资讯
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
微信扫码咨询专知VIP会员