项目名称: 脉冲扰动对微分系统动力学行为的影响及脉冲最优控制问题研究
项目编号: No.11271371
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 戴斌祥
作者单位: 中南大学
项目金额: 60万元
中文摘要: 本项目旨在利用Minimax理论、畴数理论和Morse理论等临界点理论和变分方法研究由脉冲生成的微分系统周期解、同宿异宿轨的存在性与多解性问题;建立脉冲时滞微分方程和脉冲随机时滞微分方程的Lyapunov-Razumikhin型稳定性定理,给出时滞微分系统和随机时滞微分系统可脉冲控制稳定、渐近稳定及指数稳定的充分条件;研究由脉冲生成的最优控制问题最优解的存在性问题,建立脉冲约束的最优控制问题的最大值原理,给出其最优解存在的必要条件,并给出有效的数值求最优解的算法;开展对脉冲微分系统的应用研究,对种群生态学、控制论、经济学及化学反应动力学中出现的各类脉冲模型进行系统的研究。通过上述问题的研究,进一步揭示脉冲扰动在微分系统的动力学行为中的影响和作用,为更好地了解系统特性及其变化规律、控制系统、服务人类提供理论依据。本项目对于脉冲微分方程及最优控制理论的发展和完善有着重要的理论与实际意义。
中文关键词: 脉冲扰动;临界点理论;周期解;稳定性;优化控制
英文摘要: This proposal aims to study existence and multiplicity of periodic solutions, homoclinic orbits and heteroclinic orbits of systems of differential equations with impulsive perturbations. The main approaches include but are not limited to Variational method and some critical point theories such as Minimax theory, Category theory, Morse theory. We aim to establish Lyapunov-Razumikhin stability theorems for impulsive delay differential equations and impulsive stochastic delay differential equations. We also plan to obtain some sufficient conditions for impulsive control stability, asymptotical stability and exponential stability. Another aspect we will focus on is the existence of optimal solutions to optimal control problems with constraints given by impulsive differential equations. For this type of optimal control problems, we aim to dervive maximal principle (necessary condition for optimality). In addition, we will also propose effective algorithms to numerically compute the optimal solutions. We then apply the theory to practical problems in ecology, control and chemical engineering, and economics. Through research proposed in this proposal, we hope to understand how the impulsive perturbations will affect the dynamics of systems of differential equations. This study will develop new theories on impulsive di
英文关键词: Impulsive perturbations;Critical point theory;Periodic solutions;Stability;Optimal control