线性代数是计算和数据科学家的基本工具之一。这本书“高级线性代数:基础到前沿”(ALAFF)是一个替代传统高级线性代数的计算研究生课程。重点是数值线性代数,研究理论、算法和计算机算法如何相互作用。这些材料通过将文本、视频、练习和编程交织在一起来保持学习者的参与性。
我们在不同的设置中使用了这些材料。这是我们在德克萨斯大学奥斯汀分校名为“数值分析:线性代数”的课程的主要资源,该课程由计算机科学、数学、统计和数据科学、机械工程以及计算科学、工程和数学研究生课程提供。这门课程也通过UT-Austin计算机科学硕士在线课程提供“高级线性代数计算”。最后,它是edX平台上名为“高级线性代数:基础到前沿”的大规模在线开放课程(MOOC)的基础。我们希望其他人可以将ALAFF材料重新用于其他学习设置,无论是整体还是部分。
为了退怕学习者,我们采取了传统的主题的数字线性代数课程,并组织成三部分。正交性,求解线性系统,以及代数特征值问题。
第一部分:正交性探讨了正交性(包括规范的处理、正交空间、奇异值分解(SVD)和解决线性最小二乘问题)。我们从这些主题开始,因为它们是其他课程的先决知识,学生们经常与高等线性代数并行(甚至在此之前)进行学习。
第二部分:求解线性系统集中在所谓的直接和迭代方法,同时也引入了数值稳定性的概念,它量化和限定了在问题的原始陈述中引入的误差和/或在计算机算法中发生的舍入如何影响计算的正确性。
第三部分:代数特征值问题,重点是计算矩阵的特征值和特征向量的理论和实践。这和对角化矩阵是密切相关的。推广了求解特征值问题的实用算法,使其可以用于奇异值分解的计算。本部分和本课程以在现代计算机上执行矩阵计算时如何实现高性能的讨论结束。