项目名称: 多孔介质中非达西流与非牛顿流耦合模型的数值方法研究
项目编号: No.11301307
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 潘浩
作者单位: 山东农业大学
项目金额: 22万元
中文摘要: 多孔介质流与自由流耦合模型在油藏基质中渗流与井、缝洞中自由流,地下水与地表水传质,过滤装置的设计等问题有广泛的应用,而多孔介质中非达西流与非牛顿自由流的耦合模型是此类问题的焦点。本项目提出对模型的数值分析理论与方法的研究工作,包括数值格式的设计、稳定性分析、先验误差估计、高效迭代算法的设计、计算模拟程序的编写及实际问题的模拟计算。数值格式的设计方面,一是引入中间物理量,得到多场耦合的变分弱形式;二是处理交界面条件,使得两个区域方程解耦,每个子区域方程独立求解,且保证数值格式稳定;采用的有限元逼近主要是混合元、特征元、间断元格式。先验误差估计主要利用单调非线性算子的特性,研究极小极大条件,期望得到最优误差阶。引入多物理场得到的变分形式离散后形成二重鞍点非线性代数方程组,寻求高效的迭代法也是计算模拟的重要方面。最终编写、测试有实用化前景的模拟计算程序,完成实用模拟软件的设计方案。
中文关键词: 非达西流;非牛顿流;单调非线性算子;有限元方法;数值分析
英文摘要: Coupled porous media flow with porous media flow model originates from the speeage flow in oil resevoir matrix and the fluid flow in well, transport of substances between surface water and ground water, and the design of filtration device, while coupled non-Darcy flow in porous media and non-Newtonian fluid flow model is the key point. We propose the numerical analysis for this model including the design of numerical scheme, stability analysis, a priori error estimates, efficient iterative algorithm design, simulation program coding and the practical problem compution. On one hand, introducing the intermediate physical quantities and we get the multi-field variational form; on the other hand, the interface condition is well considered to decouple the equations in two region which are solved independently; the mixed element and discountinuous element are used to approximate the weak form. Utilizing the monotone nonlinear operator property, we will prove the inf-sup condition and get the optimal convergence rates. Multi-field variational form may be discreted into the twofold saddle point nonlinear algebraic equation, which requires efficient iterative algorithm in the practical simulation. In the end, we code and test the simulation program and design the simulation software framework.
英文关键词: Non-Darcy Flow;Non-Newtonian Flow;Monotone Nonlinear Operator;Finite Element Method;Numerical Analysis