项目名称: 非线性问题的高精度自适应数值流形方法及其误差理论研究
项目编号: No.11271234
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 魏高峰
作者单位: 齐鲁工业大学
项目金额: 54万元
中文摘要: 在Sobolev空间,研究势问题和弹性力学问题的数值流形方法的误差估计理论,包括低模估计、负模估计和非整数阶模估计等。然后,研究复杂物理覆盖网格上的h、p和h-p自适应有限覆盖空间的自动构造方法的算法,复杂区域多介质上构造的复杂覆盖网格上的离散问题的误差估计,并进行软件实现。在此基础上,基于加权残数法建立非线性问题的自适应数值流形方法,引入摄动法研究非线性问题的自适应数值流形方法离散方程中非线性代数方程组的解法及其精度,并对其进行误差估计。最后,将研究成果推广到较为复杂的形状记忆合金非线性问题上,研究形状记忆合金在不同温度下其弹性模量的变化与应力、应变、温度、马氏体百分数之间的非线性耦合关系,建立形状记忆合金问题的自适应数值流形方法。本项目将建立数值流形方法较为完善的误差分析理论,并使该方法在现有的硬件资源条件下扩大计算的规模和提高计算的精度,促进数值流形方法的发展和应用。
中文关键词: 数值流形方法;自适应算法;覆盖网格;误差估计;自适应数值流形方法
英文摘要: The project will research error analysis theory of numerical manifold method in Sobolev space for potential problems and elasticity problems, including lower order norm estimate, negative norm estimate, and non-integer order norm estimate. The algorithm of adaptive covering meshes of h, p, and h-p will be presented in the complicated physical covering meshes. Error estimation of discrete problems in adaptive covering meshes of complicated multi medium region is described, and the computational software is designed. On the basis of above study, considering the algorithm of nonlinear discrete algebraic equations of the adaptive covering meshes, using weighted residual method, adaptive numerical manifold method for nonlinear problems is obtained. The algorithm and calculation precision of adaptive covering meshes are researched for nonlinear problems based on the perturbation method, and error estimate analysis is given. Finally, the research achievements are extended to double nonlinear problems of shape memory alloys, the change of modulus of elasticity in different temperature is described coupling with stress, strain, temperature, and percentage of martensite. An adaptive numerical manifold method for shape memory alloys is presented. This project will establish error analysis theory of numerical manifold metho
英文关键词: numerica manifold methodl;adaptive algorithm;covering mesh;error estimation;adaptive numerical manifold method