项目名称: 自适应三角谱元方法及其应用
项目编号: No.11201393
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 容志建
作者单位: 厦门大学
项目金额: 22万元
中文摘要: 本项目的目标是基于三角谱元方法发展一套适用于复杂区域不可压流体模拟的自适应算法。与传统谱元方法使用四边形(六面体)单元不同,三角谱元方法可使用三角形(四面体)单元,这使得该方法更容易对网格进行细化、移动等操作,因此也更合适发展自适应算法。本项目将利用成熟的三角剖分技术处理复杂几何区域,同时借鉴自适应有限元方法中的网格细化(粗化)算法,使用最优的网格求解问题。本项目还将提出有效的预条件子和并行算法加快求解速度。本项目在理论上主要解决三角谱元的Inf-Sup 条件,后验误差估计,预条件子的构造分析等问题。这些理论问题的解决将加快三角谱元方法的发展,亦将扩大其应用范围。本项目的成果将使得三角谱元方法成为大规模复杂流体问题计算的一种重要方法。
中文关键词: 谱方法;三角谱元方法;自适应算法;后验误差估计;隐形掩盖
英文摘要: The goal of the project is to develop an adaptive triangular spectral element method for the simulation of incompressible fluids in complex geometry. Triangular spectral element method is different from the classical spectral element method by using triangular(tetrahedron) element instead of quadrilateral(hexahedron) element, which makes it more suitable for developing an adaptive mesh method. We will use the triangulation technique to generate an initial mesh of triangles, then a refining/coarsening step based on the triangular spectral element posteriori error estimation will be proceeded repeatedly until obtaining the optimal mesh. Some efficient precondioners will be proposed to speed up the computation. The developed method in the project will be implemented in parallel on a computer cluster with distributed memory, and will be incorporated into our existing code. Finally, the new code will be used to perform the large scale simulation of complex fluids. There are three essential theoretical problems to be solved in the project. One is the Inf-Sup condition of triangular spectral element when solving Navier-Stokes equations. We need choose appropriate approximate spaces for velocity and pressure to avoid suspicious pressure mode, and give a rigorous proof. Another is the posteriori error estimation of
英文关键词: spectral method;triangular spectral element method;adaptive algorithm;invisibility cloaks;a posterior error estimation