时间序列分析一直是研究的热点,在很多场景都有应用。近期,IntechOpen发布一本由Chun-Kit Ngan编辑众多领域专家撰写的新书《Time Series Analysis:Data, Methods, and Applications》,总共六章,110页pdf,提供了时间序列分析的当前信息、发展和趋势,特别是在时间序列数据模式、技术方法和实际应用方面,是值的关注的一本书。
本书旨在为读者提供时间序列分析的当前信息、发展和趋势,特别是在时间序列数据模式、技术方法和实际应用方面。本书分为三节,每节包括两章。第一部分讨论了多元时间序列和模糊时间序列的分析。第2节着重于开发用于时间序列预测和分类的深度神经网络。第3节描述了如何使用时间序列技术解决实际领域的特定问题。本书包含的概念和技术涵盖了时间序列研究的主题,学生、研究人员、实践者和教授将对时间序列预测和分类、数据分析、机器学习、深度学习和人工智能感兴趣。
目录:
- 第一章:Process Fault Diagnosis for Continuous Dynamic Systems Over Multivariate Time Series (多变量时间序列上连续动态系统的过程故障诊断)
- 第二章:Fuzzy Forecast Based on Fuzzy Time Series (基于模糊时间序列的模糊预测)
- 第三章:Training Deep Neural Networks with Reinforcement Learning for Time Series Forecasting (利用强化学习训练深度神经网络进行时间序列预测)
- 第四章:CNN Approaches for Time Series Classification (CNN方法用于时间序列分类)
- 第五章:Forecasting Shrimp and Fish Catch in Chilika Lake over Time Series Analysis (通过时间序列分析,预测了赤喀湖虾、鱼的捕捞量)
- 第六章:Using Gray-Markov Model and Time Series Model to Predict Foreign Direct Investment Trend for Supporting China’s Economic Development (利用Gray马尔可夫模型和时间序列模型预测支持中国经济发展的外商直接投资趋势)