项目名称: 基于变系数模型与函数逼近的非线性非平稳系统建模与预测研究
项目编号: No.61203106
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 自动化学科
项目作者: 甘敏
作者单位: 合肥工业大学
项目金额: 23万元
中文摘要: 针对实际复杂系统的非线性、非平稳性建模和预测,是系统科学领域的一个挑战性研究课题。初步研究表明,用智能函数逼近网络来辨识变系数模型中的状态依赖函数系数,使模型的动态特性随某些解释变量的变化而自适应地变化,是研究此问题的一个有效途径。本项目拟结合智能函数逼近工具和变系数模型,针对非线性、非平稳系统进行如下内容的研究:1)研究基于智能函数逼近网络的变系数自回归模型的结构特征,其自回归系数的可解释性,并将其预测性能同其它参数、非参数模型做比较分析;通过分析非线性自回归模型在任意工作点的二阶泰勒展开式,建立具有延迟变量交互作用的状态相依自回归模型,并研究模型子集选择问题;2)用变结构神经网络来逼近状态相依自回归模型中的函数系数,建立适用于同质非平稳时间序列的变系数自回归模型;3)基于变量投影方法研究所建立模型的优化问题。所提出模型和相应优化算法将通过预测各类非线性、非平稳时间序列进行验证和改进。
中文关键词: 非线性;非平稳;自回归模型;;
英文摘要: Modeling and prediction of complex systems with nonlinearity, nonstationarity in the real world is a challeging topic in the field of system science. The applicants' preliminary research suggests that the combination of varying coefficient models and intelligent nonlinear function approximation networks, which makes the model dynamics varying with the values of some explanatory variables adaptively, is an effective approach to solve these problems. This project intends to investigate the nonlinear, nonstationary time series by combining the intelligent function approximation tools and the varying coefficient models with the following contents: 1) Explore the structure characteristics of the intelligent function approximation network-based varying-coefficient autoregressive (IFAN-AR) models, and the interpretability of the functional regressive coefficients. The forecasting performance of the IFAN-AR models will be compared with that of other competing nonlinear parametric and nonparametric models. Establish a state-dependent AR model with the interaction of delay variables through studying the two-order Taylor series of nonlinear autoregressive model at arbitary working point. The model subset selection will be considered. 2) Estabish a state-dependent AR model to work with homogeneous nonstationary time series
英文关键词: nonlinear;nonstationary;autoregressive models;;