项目名称: 低温等离子体降解微囊藻毒素机理及其生态安全性研究

项目编号: No.21207137

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 环境化学

项目作者: 张宏

作者单位: 中国科学院合肥物质科学研究院

项目金额: 26万元

中文摘要: 蓝藻水华引起微囊藻毒素污染严重威胁人类饮用水安全。由于微囊藻毒素化学性质稳定,采用常规水处理方法,如:混凝沉淀、过滤加氧等技术均不能将其有效降解或去除。光催化降解、超滤、生物降解等方法也各具局限性,且缺乏生态安全性评价而未被广泛使用。本实验室前期研究发现放电等离子体作用于生物体可以损伤或降解多肽分子。微囊藻毒素一类含有七个氨基酸的环肽,初步研究表明放电等离子体能有效将其降解,并检测到一些降解中间产物。低温等离子体处理产生大量自由基,推测自由基在毒素降解过程中起重要作用,但何种自由基如何起作用,中间产物形成途径等问题尚不清楚,而放电处理藻毒素的方法以及各种环境条件对降解影响也尚未见报道。为此,本项目将仔细研究低温等离子处理微囊藻毒素的降解动力学、降解途径和机理,以及各种实际水体环境因子对降解效率的影响,并用秀丽隐杆线虫对该方法生态安全性进行评价,从而为蓝藻毒素污染治理提供新方法和应用基础。

中文关键词: 低温等离子体;微囊藻毒素;降解;机理;生态安全性

英文摘要: Microcystins (MCs) pollution caused by harmful algal blooms imposes serious threat on the safety of drinking water. Due to the chemical stability of microcystins,the conventional water treatment methods such as coagulation, sedimentation and filtration plus oxygen cannot destroy them readily. Existing physical, chemical and biological processing techniques have also some limitations, or lack of ecological safety evaluation, so they are not widely used. In our laboratory we have found that discharge plasma can destroy or degrade peptides efficiently. Microcystins belong to a class of cyclic peptides containing seven amino acid residues. Our preliminary results indicated that discharge plasma can also degrade MCs efficiently. Some intermediates were found during the degradation. Because this non-thermal plasma treatment can produce large amounts of various free radicals, we postulate that the free radicals play an important role in the degradation process. But what and how the free radicals play the role remain elusive, and no study through this treatment method has been reported. The effect of external environment conditions on the degradation has not been reported, either. Therefore, this project will conduct the study of the degradation kinetics and dynamics of microcystins through the non-thermal plasma oxida

英文关键词: Non-thermal plasma;Microcystins;Degradation;Mechanism;Ecological safety

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
无人机地理空间情报在智能化海战中的应用
专知会员服务
115+阅读 · 2022年4月14日
AI药物研发发展研究报告(附报告)
专知会员服务
89+阅读 · 2022年2月11日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
28+阅读 · 2021年8月27日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
41+阅读 · 2021年7月11日
深度学习模型终端环境自适应方法研究
专知会员服务
33+阅读 · 2020年11月13日
图神经网络表达能力的研究综述,41页pdf
专知会员服务
169+阅读 · 2020年3月10日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
15+阅读 · 2018年6月23日
小贴士
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
无人机地理空间情报在智能化海战中的应用
专知会员服务
115+阅读 · 2022年4月14日
AI药物研发发展研究报告(附报告)
专知会员服务
89+阅读 · 2022年2月11日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
28+阅读 · 2021年8月27日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
41+阅读 · 2021年7月11日
深度学习模型终端环境自适应方法研究
专知会员服务
33+阅读 · 2020年11月13日
图神经网络表达能力的研究综述,41页pdf
专知会员服务
169+阅读 · 2020年3月10日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员