项目名称: BiVO4微纳结构光电极组合化学设计、构筑及其光解水制氢研究

项目编号: No.51302211

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 李明涛

作者单位: 西安交通大学

项目金额: 25万元

中文摘要: 研制和开发高效、稳定、环境友好的光解水材料和器件对解决能源短缺和环境污染两大问题具有重要的科学意义和实用价值。离子掺杂、构建异质结、表面修饰及形成高效捕光结构等是提高光解水效率的有效手段。本项目以具有可见光响应的BiVO4为研究对象,利用组合化学原理进行微纳结构光电极库的设计,采用金属络合物前驱液静电喷雾热分解进行高通量制备,通过扫描光学性能、光电流测试实现光解水材料的快速筛选;拟通过组合化学合成与传统单元合成相结合,建立和发展BiVO4微纳结构可控制备理论与工艺,揭示电极组成、结构、形貌与光解水产氢性能的关系;利用前述多种微纳结构促进光生电荷分离和传输,强化光生载流子利用,阐明其对提高光解水效率的作用机制,获得高活性光解水材料和器件;利用电化学分析、光电化学测试、光谱分析等手段揭示半导体/电解质界面反应过程机理及其动力学规律,为实现高效低成本太阳能制氢提供理论和技术支撑。

中文关键词: 钒酸铋;太阳能;氢能;光电化学;分解水

英文摘要: Photoelectrochemical (PEC) water splitting for hydrogen production is a promising strategy for the capture and storage of the earth's abundant solar energy influx, through which intermittent unstorable solar energy can be converted into clean and storable hydrogen energy. This strategy provides a potential solution to the problems of energy shortage and environment pollution, and will benefit human for sustainable development. The greatest challenge in this field is developing efficient, stable and environment-friendly materials and devices to work under visible light irradiation for efficiency solar-hydrogen conversion. Ion doping, constructing heterojunction, surface modification and formation high efficient light-harvesting structures are four main methods to enhance the efficiency of photoelectrochemical solar-hydrogen conversion. BiVO4 is a potential material for solar-hydrogen photoelectrochemical conversion because of its non- toxicity, stable and appropriate band gap. Herein we propose the project, design and synthesis BiVO4-based micro/nano-structured photoanodes and their properties for hydrogen production from water splitting. In this project several BiVO4-based combinatorial materials libraries will be designed and synthesized with high-throughput by electrospray pyrolysis metal complex precursors, a

英文关键词: BiVO4;Solar energy;Hydrogen generation;Photoelectrochemical;Water splitting

成为VIP会员查看完整内容
1

相关内容

中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年4月12日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
57+阅读 · 2021年5月3日
小贴士
相关主题
相关VIP内容
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
55+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年4月12日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员