项目名称: 交互作用粒子系统中的渐近性质和大偏差理论研究
项目编号: No.11301390
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 李莉娜
作者单位: 同济大学
项目金额: 22万元
中文摘要: 交互作用粒子系统是目前概率论研究的重要分支之一,它诱导出大量的新型问题,随着这些问题的解决反过来衍生出新的研究工具的发展。系统长时间行为的渐近性质和由标度极限得到的大偏差理论已成为该领域的重要研究课题。本项目一方面根据对称简单排他过程中有关原点占位时和一般加性泛函的中心极限定理结果,试图给出其Berry-Esseen型收敛速度的估计。同时还想拓展到零程过程加性泛函的中心极限定理相应的估计。另一方面,运用大偏差的理论和技巧研究不同维数情况下对称简单排他过程原点占位时中偏差原理,并将这种流体动力学极限加上扰动的方法应用到带边界驱动的简单排他过程等等。
中文关键词: 大偏差;交互作用粒子系统;收敛速度;泛函不等式;
英文摘要: The fields of interacting particle systems have began as an important branch of probability. It has led to a large number of simulating new types of problems. The solutions of many of these new problems has led in turn to the development of new tools. The asympotic properties for the long-time behavior of the systems and large deviations theory from the scaling limits are the important works in the fields. In this project, based on the central limit theorems about the occupation time of the origin and additive functionals for symmetric simple exclusion process, the Berry-Esseen type estimates for convergence rates will be obtained. At the same time, the corresponding estimations of additive functionals for zero-range process will be also prensented. On the other hand, we study the moderate deviations for the occupation time of the origin in different dimentional symmetric simple exclusion process using the large devitions theory and skills. Then we apply the methods for hydrodynamic limit and perturbations to the boundary driven symmetric simple exclusion process and so on.
英文关键词: large deviations;interacting particle systems;convengence rate;functional inequalities;