项目名称: 交互作用粒子系统中的渐近性质和大偏差理论研究

项目编号: No.11301390

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 李莉娜

作者单位: 同济大学

项目金额: 22万元

中文摘要: 交互作用粒子系统是目前概率论研究的重要分支之一,它诱导出大量的新型问题,随着这些问题的解决反过来衍生出新的研究工具的发展。系统长时间行为的渐近性质和由标度极限得到的大偏差理论已成为该领域的重要研究课题。本项目一方面根据对称简单排他过程中有关原点占位时和一般加性泛函的中心极限定理结果,试图给出其Berry-Esseen型收敛速度的估计。同时还想拓展到零程过程加性泛函的中心极限定理相应的估计。另一方面,运用大偏差的理论和技巧研究不同维数情况下对称简单排他过程原点占位时中偏差原理,并将这种流体动力学极限加上扰动的方法应用到带边界驱动的简单排他过程等等。

中文关键词: 大偏差;交互作用粒子系统;收敛速度;泛函不等式;

英文摘要: The fields of interacting particle systems have began as an important branch of probability. It has led to a large number of simulating new types of problems. The solutions of many of these new problems has led in turn to the development of new tools. The asympotic properties for the long-time behavior of the systems and large deviations theory from the scaling limits are the important works in the fields. In this project, based on the central limit theorems about the occupation time of the origin and additive functionals for symmetric simple exclusion process, the Berry-Esseen type estimates for convergence rates will be obtained. At the same time, the corresponding estimations of additive functionals for zero-range process will be also prensented. On the other hand, we study the moderate deviations for the occupation time of the origin in different dimentional symmetric simple exclusion process using the large devitions theory and skills. Then we apply the methods for hydrodynamic limit and perturbations to the boundary driven symmetric simple exclusion process and so on.

英文关键词: large deviations;interacting particle systems;convengence rate;functional inequalities;

成为VIP会员查看完整内容
0

相关内容

【干货书】面向工程师的随机过程,448页pdf
专知会员服务
79+阅读 · 2021年11月3日
专知会员服务
117+阅读 · 2021年10月6日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
112+阅读 · 2021年3月23日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
139+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
机器学习领域必知必会的12种概率分布(附Python代码实现)
算法与数学之美
21+阅读 · 2019年10月18日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
贝叶斯机器学习前沿进展
架构文摘
13+阅读 · 2018年2月11日
酒鬼漫步的数学——随机过程 | 张天蓉专栏
知识分子
10+阅读 · 2017年8月13日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关VIP内容
【干货书】面向工程师的随机过程,448页pdf
专知会员服务
79+阅读 · 2021年11月3日
专知会员服务
117+阅读 · 2021年10月6日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
112+阅读 · 2021年3月23日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
139+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
相关资讯
机器学习领域必知必会的12种概率分布(附Python代码实现)
算法与数学之美
21+阅读 · 2019年10月18日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
贝叶斯机器学习前沿进展
架构文摘
13+阅读 · 2018年2月11日
酒鬼漫步的数学——随机过程 | 张天蓉专栏
知识分子
10+阅读 · 2017年8月13日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员