项目名称: 矩阵恢复的稀疏正则化算法及其应用

项目编号: No.91330118

项目类型: 重大研究计划

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 曹飞龙

作者单位: 中国计量学院

项目金额: 65万元

中文摘要: 当前,随着人类社会对数据“需求”与“依赖”的日益增强,以及数据采集和存储技术的飞速发展,诸如遥感数据、生物数据、网络数据以及市场交易数据等高维数据大量涌现,并且这些高维数据往往以矩阵的形式出现。如何处理这些矩阵数据、建立新的可计算模型并发展有效的算法是当前计算科学、信息科学、应用数学等所面临的亟待解决的问题。本项研究将综合运用并发展优化算法、数值逼近、统计学习理论、矩阵分析等相关理论与方法,拟对矩阵恢复稀疏正则化算法的设计与求解、收敛速度的估计等问题进行深入、系统的研究。同时,创造性地从统计学习理论角度研究矩阵恢复的稀疏正则化算法的设计、稳定性分析和误差分析等。最后,拟将发展的算法有效地应用到高维图像修补、高分辨率图像恢复等研究中。本项研究的完成可为诸多实际应用问题的解决提供理论依据与算法保证,丰富高性能科学计算的可计算建模与算法理论,进一步推动交叉学科的发展。

中文关键词: 矩阵恢复;稀疏性;正则化算法;统计学习理论;图像处理

英文摘要: Up to now, with the increasing “need” and “dependence” of data, and the rapid development of technologies for sampling and storing data, high dimension data have emerged, such as remote sensing data, biological data, network data and market data. And those data are often appeared in the form of matrix. Therefore, how to deal with the high dimensional data in matrix, establish the new computational models and develop the effective algorithms are the urgent problems for computation science, information science and applied mathematics. This project firstly designs some sparse regularization algorithms for matrix recovery, derives the approximate optimal solution, and estimates the convergence speed with optimization algorithms, numerical approximation, statistical learning theory, matrix analysis, signal processing and other related theories and methods. Furthermore, it creates the new path to study the sparse regularization algorithms for matrix recovery, stability analysis and error analysis from the theory of statistical learning. Finally, it applies those proposed algorithms to high dimension image completion and high resolution image recovery. The completion of this project can provide the theoretical basis and algorithms for solving many practical problems, enrich computational models and basic algorithms in

英文关键词: matrix recov;sparsity;regularization algorithm;statistical learning theory;processing of image

成为VIP会员查看完整内容
0

相关内容

专知会员服务
28+阅读 · 2021年9月6日
专知会员服务
127+阅读 · 2021年8月13日
专知会员服务
26+阅读 · 2021年4月21日
【干货书】机器学习优化,509页pdf
专知会员服务
148+阅读 · 2021年2月26日
专知会员服务
36+阅读 · 2021年2月20日
专知会员服务
116+阅读 · 2021年1月11日
专知会员服务
79+阅读 · 2020年12月6日
专知会员服务
30+阅读 · 2020年7月31日
深度学习批归一化及其相关算法研究进展
专知会员服务
52+阅读 · 2020年7月17日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
卷积神经网络数学原理解析
算法与数学之美
20+阅读 · 2019年8月23日
一文读懂图像压缩算法
七月在线实验室
17+阅读 · 2018年5月2日
干货 | 目标识别算法的进展
计算机视觉战队
17+阅读 · 2017年6月29日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Sensitivity of sparse codes to image distortions
Arxiv
0+阅读 · 2022年4月15日
Arxiv
15+阅读 · 2021年2月19日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
小贴士
相关VIP内容
专知会员服务
28+阅读 · 2021年9月6日
专知会员服务
127+阅读 · 2021年8月13日
专知会员服务
26+阅读 · 2021年4月21日
【干货书】机器学习优化,509页pdf
专知会员服务
148+阅读 · 2021年2月26日
专知会员服务
36+阅读 · 2021年2月20日
专知会员服务
116+阅读 · 2021年1月11日
专知会员服务
79+阅读 · 2020年12月6日
专知会员服务
30+阅读 · 2020年7月31日
深度学习批归一化及其相关算法研究进展
专知会员服务
52+阅读 · 2020年7月17日
相关资讯
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
卷积神经网络数学原理解析
算法与数学之美
20+阅读 · 2019年8月23日
一文读懂图像压缩算法
七月在线实验室
17+阅读 · 2018年5月2日
干货 | 目标识别算法的进展
计算机视觉战队
17+阅读 · 2017年6月29日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员