【CVPR2022】HerosNet:用于快照压缩成像的高光谱可解释重建和最佳采样深度网络

2022 年 4 月 9 日 专知


光谱压缩感知被广泛地应用在成像系统上,其目的是利用二维传感器来捕捉三维的高光谱信号,进而取得低带宽、高计算通量的优势。成像系统通过硬件编码器压缩二维信号,随后运用重建算法实现高维信号的复原。然而,现有的方法均存在一定的局限性,如基于模型的方法迭代时间较长,实时性差;基于网络的方法又缺乏一定的可解释性。论文“HerosNet: Hyperspectral Explicable Reconstruction and Optimal Sampling Deep Network for Snapshot Compressive Imaging”研究的内容是可解释深度神经网络在光谱压缩感知上的应用。课题组的研究表明,基于深度展开的方法能够很好地利用两种方法的优势,并有效解决现有深度展开方法中缺乏跨阶段特征交互和自适应参数调整的问题。该研究结果所设计的深度展开网络受优化方法中的近邻映射启发,网络结构如图2所示,能够联合实现掩膜优化和高光谱重建。该网络通过引入动态梯度下降模块来模拟采样矩阵,自适应地更新迭代步长;该网络通过层级特征交互模块,融合之前阶段的特征用以重建当前阶段的图像。论文通讯作者为张健助理教授,信息工程学院为第一作者单位,张轩宇同学为第一作者,合作者还包括香港中文大学孙启霖助理教授、哈尔滨工业大学(深圳)张永兵教授和北京大学熊瑞勤教授。

https://www.zhuanzhi.ai/paper/f16a42fc2e4f606daf113847b63deec6



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“HENT” 就可以获取【CVPR2022】HerosNet:用于快照压缩成像的高光谱可解释重建和最佳采样深度网络》专知下载链接

专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取70000+AI(AI与军事、医药、公安等)主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取70000+AI主题知识资料
登录查看更多
1

相关内容

【AAAI2022】基于对比学习的预训练语言模型剪枝压缩
专知会员服务
28+阅读 · 2022年1月24日
【AAAI2022】基于变分信息瓶颈的图结构学习
专知会员服务
20+阅读 · 2021年12月18日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
20+阅读 · 2021年5月30日
【CVPR2021】面向视频动作分割的高效网络结构搜索
专知会员服务
14+阅读 · 2021年3月14日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
28+阅读 · 2020年5月25日
【CVPR2022】ContrastMask:对比学习来分割各种
专知
0+阅读 · 2022年3月21日
【CVPR2022】EDTER:基于Transformer的边缘检测
专知
2+阅读 · 2022年3月18日
【CVPR2021】神经结构搜索的相对论性评价
专知
3+阅读 · 2021年3月25日
【CVPR2021】空间一致性表示学习
专知
0+阅读 · 2021年3月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Challenges for Open-domain Targeted Sentiment Analysis
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员