This work addresses the Burst Super-Resolution (BurstSR) task using a new architecture, which requires restoring a high-quality image from a sequence of noisy, misaligned, and low-resolution RAW bursts. To overcome the challenges in BurstSR, we propose a Burst Super-Resolution Transformer (BSRT), which can significantly improve the capability of extracting inter-frame information and reconstruction. To achieve this goal, we propose a Pyramid Flow-Guided Deformable Convolution Network (Pyramid FG-DCN) and incorporate Swin Transformer Blocks and Groups as our main backbone. More specifically, we combine optical flows and deformable convolutions, hence our BSRT can handle misalignment and aggregate the potential texture information in multi-frames more efficiently. In addition, our Transformer-based structure can capture long-range dependency to further improve the performance. The evaluation on both synthetic and real-world tracks demonstrates that our approach achieves a new state-of-the-art in BurstSR task. Further, our BSRT wins the championship in the NTIRE2022 Burst Super-Resolution Challenge.
翻译:这项工作针对的是布斯特超级分辨率(Burst Super-分辨率)任务,它使用新的架构,要求从噪音、错误和低分辨率的RAW串流中恢复高品质图像。为了克服布斯特SR的挑战,我们提议建立一个布斯特超级分辨率变异器(BSRT),它可以大大提高提取跨框架信息和重建的能力。为了实现这一目标,我们提议建立一个金字塔流动监控变异网络(Pyramid FG-DCN),并将Swin变异器块和集团作为我们的主要骨干。更具体地说,我们把光学流和变形变形变形变形组合结合起来,这样我们的BSRT就能更有效地处理错配和汇总多框架的潜在质信息。此外,我们的基于变异器的结构可以捕捉长期的依赖性来进一步改进业绩。对合成和真实世界轨道的评价表明,我们的方法在布尔斯特SR任务中达到了一个新的状态。此外,我们的BSRT可以赢得在TRE20 Burst TRU TRUAL 的冠军。