近年来,随着深度学习的飞速发展,深度神经网络受到了越来越多的关注,在许多应用领域取得了显著效果。通常,在较高的计算量下,深度神经网络的学习能力随着网络层深度的增加而不断提高,因此深度神经网络在大型数据集上的表现非常卓越。然而,由于其计算量大、存储成本高、模型复杂等特性,使得深度学习无法有效地应用于轻量级移动便携设备。因此,压缩、优化深度学习模型成为目前研究的热点,当前主要的模型压缩方法有模型裁剪、轻量级网络设计、知识蒸馏、量化、体系结构搜索等。通过对以上方法的性能、优缺点和最新研究成果进行分析总结,对未来研究方向进行了展望。

成为VIP会员查看完整内容
117

相关内容

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。
专知会员服务
81+阅读 · 2020年8月4日
专知会员服务
223+阅读 · 2020年8月1日
深度学习目标检测方法综述
专知会员服务
280+阅读 · 2020年8月1日
专知会员服务
74+阅读 · 2020年5月21日
深度神经网络模型压缩与加速综述
专知会员服务
130+阅读 · 2019年10月12日
AI综述专栏 | 深度神经网络加速与压缩
人工智能前沿讲习班
31+阅读 · 2018年10月31日
CNN模型压缩与加速算法综述
微信AI
6+阅读 · 2017年10月11日
干货|CNN 模型压缩与加速算法综述
全球人工智能
9+阅读 · 2017年8月26日
CNN 模型压缩与加速算法综述
机器学习研究会
16+阅读 · 2017年8月25日
VIP会员
相关VIP内容
专知会员服务
81+阅读 · 2020年8月4日
专知会员服务
223+阅读 · 2020年8月1日
深度学习目标检测方法综述
专知会员服务
280+阅读 · 2020年8月1日
专知会员服务
74+阅读 · 2020年5月21日
深度神经网络模型压缩与加速综述
专知会员服务
130+阅读 · 2019年10月12日
相关资讯
AI综述专栏 | 深度神经网络加速与压缩
人工智能前沿讲习班
31+阅读 · 2018年10月31日
CNN模型压缩与加速算法综述
微信AI
6+阅读 · 2017年10月11日
干货|CNN 模型压缩与加速算法综述
全球人工智能
9+阅读 · 2017年8月26日
CNN 模型压缩与加速算法综述
机器学习研究会
16+阅读 · 2017年8月25日
微信扫码咨询专知VIP会员