【导读】纽约大学的Andrew Gordon Wilson和Pavel Izmailov在论文中从概率角度的泛化性对贝叶斯深度学习进行了探讨。贝叶斯方法的关键区别在于它是基于边缘化,而不是基于最优化的,这为它带来了许多优势。

贝叶斯方法的关键区别是边缘化,而不是使用单一的权重设置。贝叶斯边缘化可以特别提高现代深度神经网络的准确性和校准,这是典型的不由数据完全确定,可以代表许多令人信服的但不同的解决方案。我们证明了深度集成为近似贝叶斯边缘化提供了一种有效的机制,并提出了一种相关的方法,通过在没有显著开销的情况下,在吸引域边缘化来进一步改进预测分布。我们还研究了神经网络权值的模糊分布所隐含的先验函数,从概率的角度解释了这些模型的泛化性质。从这个角度出发,我们解释了那些对于神经网络泛化来说神秘而独特的结果,比如用随机标签来拟合图像的能力,并证明了这些结果可以用高斯过程来重现。最后,我们提供了校正预测分布的贝叶斯观点。

成为VIP会员查看完整内容
83

相关内容

贝叶斯方法可以用于学习神经网络权重的概率分布。将神经网络中的wi 和 b 由确定的值变成分布(distributions)。具体而言,为弥补反向传播的不足,通过在模型参数或模型输出上放置概率分布来估计。在权重上放置一个先验分布,然后尝试捕获这些权重在给定数据的情况下变化多少来模拟认知不确定性。该方法不是训练单个网络,而是训练网络集合,其中每个网络的权重来自共享的、已学习的概率分布。
最新《深度多模态数据分析》综述论文,26页pdf
专知会员服务
298+阅读 · 2020年6月16日
最新《知识蒸馏》2020综述论文,20页pdf,悉尼大学
专知会员服务
157+阅读 · 2020年6月14日
【新书册】贝叶斯神经网络,41页pdf
专知会员服务
177+阅读 · 2020年6月3日
用模型不确定性理解模型
论智
11+阅读 · 2018年9月5日
【深度】让DL可解释?这一份66页贝叶斯深度学习教程告诉你
GAN生成式对抗网络
15+阅读 · 2018年8月11日
再谈变分自编码器VAE:从贝叶斯观点出发
PaperWeekly
13+阅读 · 2018年4月2日
Arxiv
23+阅读 · 2018年10月1日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
微信扫码咨询专知VIP会员