近年来,神经网络已成为分析复杂和抽象数据模型的有力工具。然而,它们的引入本质上增加了我们的不确定性,即分析的哪些特征是与模型相关的,哪些是由神经网络造成的。这意味着,神经网络的预测存在偏差,无法与数据的创建和观察的真实本质区分开来。为了尝试解决这些问题,我们讨论了贝叶斯神经网络:可以描述由网络引起的不确定性的神经网络。特别地,我们提出了贝叶斯统计框架,它允许我们根据观察某些数据的根深蒂固的随机性和我们缺乏关于如何创建和观察数据的知识的不确定性来对不确定性进行分类。在介绍这些技术时,我们展示了如何从原理上获得神经网络预测中的误差,并提供了描述这些误差的两种常用方法。我们还将描述这两种方法在实际应用时如何存在重大缺陷,并强调在使用神经网络时需要其他统计技术来真正进行推理。

成为VIP会员查看完整内容
178

相关内容

最新《多任务学习》综述,39页pdf
专知会员服务
265+阅读 · 2020年7月10日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
最新《智能交通系统的深度强化学习》综述论文,22页pdf
【经典书】机器学习高斯过程,266页pdf
专知会员服务
197+阅读 · 2020年5月2日
421页《机器学习数学基础》最新2019版PDF下载
贝叶斯神经网络(系列)第一篇
AI研习社
14+阅读 · 2019年3月1日
稀疏性的3个优势 -《稀疏统计学习及其应用》
遇见数学
15+阅读 · 2018年10月24日
【干货】监督学习与无监督学习简介
专知
14+阅读 · 2018年4月4日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
Area Attention
Arxiv
5+阅读 · 2019年5月23日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
3+阅读 · 2018年10月11日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关VIP内容
相关论文
微信扫码咨询专知VIP会员