大型语言模型(LLMs)的不断增大引入了在它们的训练和推断中面临的挑战。移除模型组件被认为是解决大型模型尺寸问题的一种方法,然而,现有的剪枝方法仅关注性能,而没有考虑到对LLMs的负责任使用的一个重要方面:模型的公平性。 对于多样化群体,如女性、黑人、LGBTQ+、犹太社区等,重要的是要关注LLMs的公平性,因为它们正在被部署并面向广泛的受众。在这项工作中,首先,我们研究了在基于预训练Transformer的语言模型中,注意力头(attention heads)如何影响公平性和性能。然后,我们提出了一种新的方法,用于剪枝那些对公平性产生负面影响但对性能至关重要的注意力头,即语言建模能力的关键头部。我们的方法在时间和资源方面具有实用性,因为它不需要对最终剪枝后的更公平模型进行微调。 我们的研究结果表明,与有偏见的模型相比,DistilGPT-2、GPT2、两种不同尺寸的GPT-Neo、GPT-J和Llama 2模型的性别偏见分别减少了19%、19.5%、39.5%、34.7%、23%和8%,而性能只略有下降。警告:本研究使用了具有冒犯性质的语言。

成为VIP会员查看完整内容
42

相关内容

【CVPR2023】GeoLayoutLM:视觉信息提取的几何预训练
专知会员服务
30+阅读 · 2023年4月25日
【ICML2022】在线决策Transformer
专知会员服务
33+阅读 · 2022年7月27日
【AAAI2022】基于对比学习的预训练语言模型剪枝压缩
专知会员服务
27+阅读 · 2022年1月24日
专知会员服务
12+阅读 · 2021年10月11日
专知会员服务
21+阅读 · 2021年9月27日
专知会员服务
21+阅读 · 2021年2月6日
专知会员服务
29+阅读 · 2020年9月18日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
40+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2月13日
Arxiv
2+阅读 · 2月9日
Arxiv
157+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
398+阅读 · 2023年3月31日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
VIP会员
相关VIP内容
【CVPR2023】GeoLayoutLM:视觉信息提取的几何预训练
专知会员服务
30+阅读 · 2023年4月25日
【ICML2022】在线决策Transformer
专知会员服务
33+阅读 · 2022年7月27日
【AAAI2022】基于对比学习的预训练语言模型剪枝压缩
专知会员服务
27+阅读 · 2022年1月24日
专知会员服务
12+阅读 · 2021年10月11日
专知会员服务
21+阅读 · 2021年9月27日
专知会员服务
21+阅读 · 2021年2月6日
专知会员服务
29+阅读 · 2020年9月18日
【伯克利】再思考 Transformer中的Batch Normalization
专知会员服务
40+阅读 · 2020年3月21日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
40+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员