由于标注大规模数据集的成本仍然较高,近年针对无监督行人重识别任务涌现了大量的工作。现有的工作主要关注于视觉信息,在智能监控网络中常见的时间、摄像头号等元信息通常被忽略,然而这些信息在实际应用中能够为重识别提供辅助。同时,为了更准确地建模摄像头网络中的复杂关系,本文使用超图结构表示摄像头所采集的样本与样本间关联关系。综上,本文提出了全新的基于元信息的超图模型(MGH)来解决 “如何建模复杂关联”这一问题。
方法概述
如图1所示的算法框架,主要由超图构建、超图标签传播和基于Memory的Coarse-to-fine监督。本文在聚类—微调的训练框架下对特征提取网络进行反复训练直至收敛,首先,在超图构建阶段,通过预训练网络提取样本视觉特征,结合元信息与视觉特征构建超图;随后,在基于超图的标签传播阶段,进行两阶段的标签预测,使用聚类算法进行粗聚类,而后使用基于超图的标签传播算法进行标签修正;最后,在计算损失过程中,使用基于Memory的损失函数进行训练,分别从样本、摄像头两个层级构建损失。
实验结果
本方法在三个标准数据集上与现有方法进行了对比,对比结果如表1和表2所示,可以发现本方法在三个数据集上都达到的领先水平。此外,对本方法中使用的超图聚类方法以及损失函数进行了消融实验,实验结果如表3和图2所示,可以发现在选择超图聚类算法时,使用KNN(K=5)的情况下已经可以取得较好的结果,在结合DBSCAN能够有一定提升。
作者:吴一鸣,吴欣填,田健,李玺
单位:浙江大学
邮箱:
论文:
https://dl.acm.org/doi/10.1145/3474085.3475296
代码: