Glaucoma is a chronic eye disease that leads to irreversible vision loss. The cup to disc ratio (CDR) plays an important role in the screening and diagnosis of glaucoma. Thus, the accurate and automatic segmentation of optic disc (OD) and optic cup (OC) from fundus images is a fundamental task. Most existing methods segment them separately, and rely on hand-crafted visual feature from fundus images. In this paper, we propose a deep learning architecture, named M-Net, which solves the OD and OC segmentation jointly in a one-stage multi-label system. The proposed M-Net mainly consists of multi-scale input layer, U-shape convolutional network, side-output layer, and multi-label loss function. The multi-scale input layer constructs an image pyramid to achieve multiple level receptive field sizes. The U-shape convolutional network is employed as the main body network structure to learn the rich hierarchical representation, while the side-output layer acts as an early classifier that produces a companion local prediction map for different scale layers. Finally, a multi-label loss function is proposed to generate the final segmentation map. For improving the segmentation performance further, we also introduce the polar transformation, which provides the representation of the original image in the polar coordinate system. The experiments show that our M-Net system achieves state-of-the-art OD and OC segmentation result on ORIGA dataset. Simultaneously, the proposed method also obtains the satisfactory glaucoma screening performances with calculated CDR value on both ORIGA and SCES datasets.


翻译:Glaucoma 是一种导致不可逆视力丧失的慢性眼病。 盘对盘比( CDR) 在青光谱的筛选和诊断中起着重要作用。 因此, 光碟和光杯( OC) 的准确和自动分割从 Fundus 图像中产生是一项基本任务。 多数现有方法将光碟和光杯( OD) 的准确和自动分割从 Fundus 图像中分离出来, 并依赖于 Fundus 图像中的手工制作视觉特征。 在本文中, 我们建议建立一个名为 M- Net 的深层次学习结构, 在一个单阶段多标签系统中共同解决OD和OC的分割问题。 提议的M- 网主要是多尺度输入层、 Ushape 共振网络、 侧输出层和多标签丢失功能。 多尺度输入图像金字塔, 以多层次的图像结构来学习高等级代表, 而侧输出层则作为早期分类, 为不同层次的本地预测地图。 最后, 多层次的图像分析功能也是我们最初的轨道分析, 的计算结果分析, 也提供我们最初的S- dal- dalalation A 分析。

6
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
专知会员服务
116+阅读 · 2019年12月24日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
3+阅读 · 2018年3月5日
Arxiv
5+阅读 · 2016年10月24日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员