This paper presents a Progressively-connected Light Field network (ProLiF), for the novel view synthesis of complex forward-facing scenes. ProLiF encodes a 4D light field, which allows rendering a large batch of rays in one training step for image- or patch-level losses. Directly learning a neural light field from images has difficulty in rendering multi-view consistent images due to its unawareness of the underlying 3D geometry. To address this problem, we propose a progressive training scheme and regularization losses to infer the underlying geometry during training, both of which enforce the multi-view consistency and thus greatly improves the rendering quality. Experiments demonstrate that our method is able to achieve significantly better rendering quality than the vanilla neural light fields and comparable results to NeRF-like rendering methods on the challenging LLFF dataset and Shiny Object dataset. Moreover, we demonstrate better compatibility with LPIPS loss to achieve robustness to varying light conditions and CLIP loss to control the rendering style of the scene. Project page: https://totoro97.github.io/projects/prolif.
翻译:本文展示了一个逐渐连接的光场网络(ProLiF), 用于对复杂远视场景进行新视角合成。 ProLiF 将一个4D光场编码成一个4D光场, 从而能够在一个培训步骤中为图像或近距离损失提供大量光线。 从图像直接学习一个神经光场很难制作多视图一致的图像, 因为它不了解基本的 3D 几何。 为了解决这一问题, 我们提议了一个渐进式培训计划和规范损失, 以推断培训期间的基本几何学, 两者都能够加强多视图的一致性, 从而大大改善图像质量。 实验表明, 我们的方法能够大大提高质量, 比香草神经光场的质量, 和类似NERF 的光谱化方法, 在具有挑战性的LLLFF数据集和Shiny 对象数据集方面, 我们展示了与LPIPS损失的更好兼容性, 以实现对不同光度条件的稳健和CLIP损失, 以控制场景的形态。 项目网页: https://torooro97.github.io/ produmental/ prof. prof.