Low-Rank Adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning foundation models by re-parameterizing the original matrix into the product of two low-rank matrices. Despite its efficiency, LoRA often yields inferior performance compared to full fine-tuning. In this paper, we propose LoRA-Pro to bridge this performance gap. Firstly, we delve into the optimization processes in LoRA and full fine-tuning. We reveal that while LoRA employs low-rank approximation, it neglects to approximate the optimization process of full fine-tuning. To address this, we introduce a novel concept called the "equivalent gradient." This virtual gradient makes the optimization process on the re-parameterized matrix equivalent to LoRA, which can be used to quantify the differences between LoRA and full fine-tuning. The equivalent gradient is derived from the gradients of matrices $A$ and $B$. To narrow the performance gap, our approach minimizes the differences between the equivalent gradient and the gradient obtained from full fine-tuning during the optimization process. By solving this objective, we derive optimal closed-form solutions for updating matrices $A$ and $B$. Our method constrains the optimization process, shrinking the performance gap between LoRA and full fine-tuning. Extensive experiments on natural language processing tasks validate the effectiveness of our method.
翻译:暂无翻译