Semantic segmentation of 3D point cloud is an essential task for autonomous driving environment perception. The pipeline of most pointwise point cloud semantic segmentation methods includes points sampling, neighbor searching, feature aggregation, and classification. Neighbor searching method like K-nearest neighbors algorithm, KNN, has been widely applied. However, the complexity of KNN is always a bottleneck of efficiency. In this paper, we propose an end-to-end neural architecture, Multiple View Pointwise Net, MVP-Net, to efficiently and directly infer large-scale outdoor point cloud without KNN or any complex pre/postprocessing. Instead, assumption-based sorting and multi-rotation of point cloud methods are introduced to point feature aggregation and receptive field expanding. Numerical experiments show that the proposed MVP-Net is 11 times faster than the most efficient pointwise semantic segmentation method RandLA-Net and achieves the same accuracy on the large-scale benchmark SemanticKITTI dataset.
翻译:3D点云的语义分解是自主驱动环境感知的基本任务。 大多数点点云的语义分解方法的管道包括点取样、邻居搜索、特征聚合和分类。 K- 近距离邻居算法 KNN 等邻里搜索方法已被广泛应用。 然而, KNN 的复杂性始终是效率的瓶颈。 在本文中, 我们提议了一个端到端神经结构、 多视图点网、 MVP- Net, 以高效和直接地将大型室外点云转换成没有 KNN 或任何复杂前/ 后期处理的大型户外点云。 相反, 引入基于假设的分拣和多旋转点云方法来点集合和扩展可接受域。 数字实验显示, 拟议的 MVP- Net 比最高效的点语义分解法 RandLA- Net 速度快11倍, 并在大型基准 SmanticKITTI 数据集上达到同样精确度。