Empirical works suggest that various semantics emerge in the latent space of Generative Adversarial Networks (GANs) when being trained to generate images. To perform real image editing, it requires an accurate mapping from the real image to the latent space to leveraging these learned semantics, which is important yet difficult. An in-domain GAN inversion approach is recently proposed to constraint the inverted code within the latent space by forcing the reconstructed image obtained from the inverted code within the real image space. Empirically, we find that the inverted code by the in-domain GAN can deviate from the latent space significantly. To solve this problem, we propose a force-in-domain GAN based on the in-domain GAN, which utilizes a discriminator to force the inverted code within the latent space. The force-in-domain GAN can also be interpreted by a cycle-GAN with slight modification. Extensive experiments show that our force-in-domain GAN not only reconstructs the target image at the pixel level, but also align the inverted code with the latent space well for semantic editing.
翻译:经验性工程表明, 各种语义学在培养图像时出现在 Generation Adversarial Network (GANs) 的潜在空间中。 为了进行真实的图像编辑, 它需要从真实的图像到潜在空间进行精确的映射, 以便利用这些已经学到的语义学, 这很重要 。 最近提议了一种在内部的 GAN 反演法, 以限制在潜在空间中的反向代码。 强迫从真实图像空间的反向代码中获得的重建图像, 从而限制在潜在空间中的反向代码 。 抽象地说, 我们发现, 内部GAN 的反向代码可以显著地偏离隐藏空间 。 为了解决这个问题, 我们提议了以内部 GAN 为基础, 以内部GAN 为主, 使用歧视器在潜在空间中强制使用反向代码。 边部的GAN 也可以被循环的GAN 解释, 并稍作修改 。 广泛的实验显示, 我们的GAN 内部GAN 不仅在像素层重建目标图像, 而且还将内代码与深层空间修改。