We present a novel high-fidelity generative adversarial network (GAN) inversion framework that enables attribute editing with image-specific details well-preserved (e.g., background, appearance and illumination). We first formulate GAN inversion as a lossy data compression problem and carefully discuss the Rate-Distortion-Edit trade-off. Due to this trade-off, previous works fail to achieve high-fidelity reconstruction while keeping compelling editing ability with a low bit-rate latent code only. In this work, we propose a distortion consultation approach that employs the distortion map as a reference for reconstruction. In the distortion consultation inversion (DCI), the distortion map is first projected to a high-rate latent map, which then complements the basic low-rate latent code with (lost) details via consultation fusion. To achieve high-fidelity editing, we propose an adaptive distortion alignment (ADA) module with a self-supervised training scheme. Extensive experiments in the face and car domains show a clear improvement in terms of both inversion and editing quality.


翻译:我们提出了一个新颖的高纤维基因对抗网络(GAN)倒置框架,使编辑与图像特有细节(例如背景、外观和光照)的属性得到良好的保护(例如背景、外观和光化),我们首先将GAN反向写成数据压缩丢失的问题,并仔细讨论利率扭曲-电磁交换交易。由于这一权衡,先前的工程未能实现高纤维重建,同时只保留低位速率潜伏代码的编辑能力。在这项工作中,我们建议采用扭曲协商方法,将扭曲地图用作重建的参考。在扭曲反向协商(DCI)中,扭曲地图首先被预测为高比例潜伏图,然后通过协商聚合(Loission)对基本低利率潜伏代码进行补充。为了实现高纤维化编辑,我们建议采用自强的训练计划,调整扭曲调整模块。在面部和汽车领域的广泛实验显示在转换和编辑质量两方面都有明显改进。

0
下载
关闭预览

相关内容

GAN:生成性对抗网,深度学习模型的一种,在神经网络模型中引入竞争机制,非常流行。
专知会员服务
31+阅读 · 2021年6月12日
【CVPR2021】GAN人脸预训练模型
专知会员服务
23+阅读 · 2021年4月10日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2020年7月16日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员