Gaussian processes (GPs) are non-parametric Bayesian models that are widely used for diverse prediction tasks. Previous work in adding strong privacy protection to GPs via differential privacy (DP) has been limited to protecting only the privacy of the prediction targets (model outputs) but not inputs. We break this limitation by introducing GPs with DP protection for both model inputs and outputs. We achieve this by using sparse GP methodology and publishing a private variational approximation on known inducing points. The approximation covariance is adjusted to approximately account for the added uncertainty from DP noise. The approximation can be used to compute arbitrary predictions using standard sparse GP techniques. We propose a method for hyperparameter learning using a private selection protocol applied to validation set log-likelihood. Our experiments demonstrate that given sufficient amount of data, the method can produce accurate models under strong privacy protection.


翻译:Gaussian 过程(GPs) 是非参数性的贝耶斯模型,广泛用于不同的预测任务。以前通过不同的隐私(DP)为GP增加强力的隐私保护的工作仅限于保护预测目标的隐私(模型产出),而不是保护投入。我们通过对模型投入和产出采用DP保护来打破这一限制。我们通过使用稀疏的GP方法并在已知诱导点上公布一种私人的变异近似来实现这一目标。近似差数被调整为大致考虑到DP噪音增加的不确定性。近似差可用于使用标准的稀有GP技术计算任意预测。我们提出使用用于验证日志相似性的私人选择协议进行超光谱学习的方法。我们的实验表明,如果数据足够多,该方法可以在强大的隐私保护下产生准确模型。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
206+阅读 · 2020年1月13日
注意力机制介绍,Attention Mechanism
专知会员服务
168+阅读 · 2019年10月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员