Overparameterization in deep learning typically refers to settings where a trained Neural Network (NN) has representational capacity to fit the training data in many ways, some of which generalize well, while others do not. In the case of Recurrent Neural Networks (RNNs), there exists an additional layer of overparameterization, in the sense that a model may exhibit many solutions that generalize well for sequence lengths seen in training, some of which extrapolate to longer sequences, while others do not. Numerous works studied the tendency of Gradient Descent (GD) to fit overparameterized NNs with solutions that generalize well. On the other hand, its tendency to fit overparameterized RNNs with solutions that extrapolate has been discovered only lately, and is far less understood. In this paper, we analyze the extrapolation properties of GD when applied to overparameterized linear RNNs. In contrast to recent arguments suggesting an implicit bias towards short-term memory, we provide theoretical evidence for learning low dimensional state spaces, which can also model long-term memory. Our result relies on a dynamical characterization which shows that GD (with small step size and near-zero initialization) strives to maintain a certain form of balancedness, as well as on tools developed in the context of the moment problem from statistics (recovery of a probability distribution from its moments). Experiments corroborate our theory, demonstrating extrapolation via learning low dimensional state spaces with both linear and non-linear RNNs


翻译:深层学习中的超度分解通常是指经过培训的神经网络(NN)具有在许多方面适应培训数据的代表性能力的环境,其中有些是全面概括的,而另一些则不是。在经常性神经网络(RNN)中,还存在额外的超度分解层,即模型可能展示出许多解决方案,对培训中所见的序列长度非常概括化,有些是外推到较长的顺序,而另一些则不是。许多工作研究了渐进源(GD)对超度分解的NNN(GD)的定位趋势,以多种方式适应超度分解的NND(GN)数据,而有些方法则非常笼统,而另一些工作则没有。另一方面,它倾向于将超度分计的RNNNN(RNNN)数据与最近才发现且远为外推的解决方案相匹配。在本文中,我们分析了GD的外推值在应用到超度线线线线线线线性状态(GD)对短期记忆的隐含偏向性偏差,我们提供了理论证据,这些也模拟长期记忆的模型。我们的直径直径直径直径性结果取决于动态的理论,从极级的理论分析,从极地的理论分析过程的深度分布,从最初的深度分析,从正态的深度分析过程的深度分析过程的深度分析过程的深度分析过程的深度分析,从正态,从正态的深度分析,从直径向,从正态,从点的走向,从点向,从点向,向,向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向,从一个方向的直向,从一个方向,从一个方向的直向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向

0
下载
关闭预览

相关内容

通用动力公司(General Dynamics)是一家美国的国防企业集团。2008年时通用动力是世界第五大国防工业承包商。由于近年来不断的扩充和并购其他公司,通用动力现今的组成与面貌已与冷战时期时大不相同。现今通用动力包含三大业务集团:海洋、作战系统和资讯科技集团。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
13+阅读 · 2021年5月25日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员