Let $G$ be a connected graph. The eccentricity of a path $P$, denoted by ecc$_G(P)$, is the maximum distance from $P$ to any vertex in $G$. In the \textsc{Central path} (CP) problem our aim is to find a path of minimum eccentricity. This problem was introduced by Cockayne et al., in 1981, in the study of different centrality measures on graphs. They showed that CP can be solved in linear time in trees, but it is known to be NP-hard in many classes of graphs such as chordal bipartite graphs, planar 3-connected graphs, split graphs, etc. We investigate the path eccentricity of a connected graph~$G$ as a parameter. Let pe$(G)$ denote the value of ecc$_G(P)$ for a central path $P$ of $G$. We obtain tight upper bounds for pe$(G)$ in some graph classes. We show that pe$(G) \leq 1$ on biconvex graphs and that pe$(G) \leq 2$ on bipartite convex graphs. Moreover, we design algorithms that find such a path in linear time. On the other hand, by investigating the longest paths of a graph, we obtain tight upper bounds for pe$(G)$ on general graphs and $k$-connected graphs. Finally, we study the relation between a central path and a longest path in a graph. We show that on trees, and bipartite permutation graphs, a longest path is also a central path. Furthermore, for superclasses of these graphs, we exhibit counterexamples for this property.
翻译:Lets G$ 是一个连接的图形。 路径 $P$ 的偏心度, 以 ecc$_ G( P) 表示, 路径的偏心度是美元中任何顶点的最大距离。 在 \ textsc{ Central 路径 (CP) 中, 我们的目标是找到一个最小偏心度路径。 1981年 Cockayne 等人在对图表中不同的中心度测量中引入了这个问题。 他们显示, 路径在树上线性时间可以解决 $P$, 但在许多图表类中, 已知是 NPP- 硬值, 例如 chordal 双part 图表、 平面图 3 连接的图表、 分裂图等等。 我们调查了连接的图形 ~ G 美元 a 的路径 。 Lete$ (G) 表示到 ecc_ G( P) 美元在中央路径上的价值 $。 我们在一些图表类中获取了更紧的直线线线值, 也从我们得到了 美元 的直线线点 。 我们通过 rudeal deal deal deal deal deal $ 。