Advances in deep learning for human activity recognition have been relatively limited due to the lack of large labelled datasets. In this study, we leverage self-supervised learning techniques on the UK-Biobank activity tracker dataset--the largest of its kind to date--containing more than 700,000 person-days of unlabelled wearable sensor data. Our resulting activity recognition model consistently outperformed strong baselines across seven benchmark datasets, with an F1 relative improvement of 2.5%-100% (median 18.4%), the largest improvements occurring in the smaller datasets. In contrast to previous studies, our results generalise across external datasets, devices, and environments. Our open-source model will help researchers and developers to build customisable and generalisable activity classifiers with high performance.
翻译:人类活动识别的深层学习进展相对有限,因为缺少大标记数据集。 在这次研究中,我们利用英国银行活动跟踪器数据集(Biobank activities tracker datas)的自我监督学习技术,这是迄今为止此类数据中最大的一个,包含700 000人日以上未贴标签的可磨损传感器数据。我们由此产生的活动识别模型在七个基准数据集中一直优于强的基线,F1相对改进率为2.5%-100%(中位数18.4%),这是较小数据集中最大的改进。 与以往的研究相比,我们的成果在外部数据集、装置和环境中是通用的。 我们的开放源模型将帮助研究人员和开发者建立可定制和通用的活动分类器,高性能。