Despite proportionality being one of the tenets of data protection laws, we currently lack a robust analytical framework to evaluate the reach of modern data collections and the network effects at play. We here propose a graph-theoretic model and notions of node- and edge-observability to quantify the reach of networked data collections. We first prove closed-form expressions for our metrics and quantify the impact of the graph's structure on observability. Second, using our model, we quantify how (1) from 270,000 compromised accounts, Cambridge Analytica collected 68.0M Facebook profiles; (2) from surveilling 0.01\% the nodes in a mobile phone network, a law-enforcement agency could observe 18.6\% of all communications; and (3) an app installed on 1\% of smartphones could monitor the location of half of the London population through close proximity tracing. Better quantifying the reach of data collection mechanisms is essential to evaluate their proportionality.
翻译:尽管数据保护法的原则是相称的,但我们目前缺乏一个强有力的分析框架来评价现代数据收集的覆盖范围和网络效果,我们在此提出一个图表理论模型和节点和边边观察概念,以量化网络数据收集的覆盖范围,我们首先证明我们的计量标准是封闭式的表达方式,并量化图的结构对可观测性的影响。第二,利用我们的模型,我们量化(1) 从270 000个失密账户中,剑桥分析公司收集了68.0M 脸书的概况;(2) 从在移动电话网络中保护0.01<unk> 节点,执法机构可以观察所有通信的18.6<unk> ;(3) 在1<unk> 智能手机上安装的应用程序可以通过近距离追踪监测半数伦敦人口的位置。更好地量化数据收集机制的覆盖范围对于评价其相称性至关重要。</s>