Pre-integration is an extension of conditional Monte Carlo to quasi-Monte Carlo and randomized quasi-Monte Carlo. It can reduce but not increase the variance in Monte Carlo. For quasi-Monte Carlo it can bring about improved regularity of the integrand with potentially greatly improved accuracy. Pre-integration is ordinarily done by integrating out one of $d$ input variables to a function. In the common case of a Gaussian integral one can also pre-integrate over any linear combination of variables. We propose to do that and we choose the first eigenvector in an active subspace decomposition to be the pre-integrated linear combination. We find in numerical examples that this active subspace pre-integration strategy is competitive with pre-integrating the first variable in the principal components construction on the Asian option where principal components are known to be very effective. It outperforms other pre-integration methods on some basket options where there is no well established default. We show theoretically that, just as in Monte Carlo, pre-integration can reduce but not increase the variance when one uses scrambled net integration. We show that the lead eigenvector in an active subspace decomposition is closely related to the vector that maximizes a less computationally tractable criterion using a Sobol' index to find the most important linear combination of Gaussian variables. They optimize similar expectations involving the gradient. We show that the Sobol' index criterion for the leading eigenvector is invariant to the way that one chooses the remaining $d-1$ eigenvectors with which to sample the Gaussian vector.
翻译:整合前是有条件的 Monte Carlo 和 准 Monte 和 随机化 准 Monte 的延伸。 它可以减少但不会增加 Monte Carlo 的差异。 对于 准 Monte Carlo 来说, 它可以提高整顿前的规律性, 并有可能大大提高准确性。 整合前通常通过将一个美元输入变量整合到函数中来完成。 在Gaussian 整合后的一个常见例子中, 也可以先于任何线性变量组合进行整合。 我们提议这样做, 并且我们选择一个活跃的子空间分解中的第一位矢量选为整合前线性组合。 我们从数字中发现, 这个活跃的子空间前端战略具有竞争力, 将主要组成部分中的第一个变量整合到已知非常有效的亚洲选项中。 在一些没有固定默认默认的篮子选项上, 它比其他整合前的方法要强。 我们从理论上看, 和蒙特 卡洛一样, 整合前的变量可以减少但不会增加差异, 当我们使用一个紧密的网络整合时, 我们从导值 最接近的 的平流化的平流化的递化值前 标准显示, 我们显示, 最接近的递化的递化的递增的递增的递增的递增的递增的递增的递增的递增的递增的轴值标准 水平的递增的递增的递增的递增的递增的递增的递增的递升的递增的递升的递升的递升的递升的递增的递增的递增的递增的递增的递增标准 。