We propose a new perspective for the evaluation of matching procedures by considering the complexity of the function class they belong to. Under this perspective we provide theoretical guarantees on post-matching covariate balance through a finite sample concentration inequality. We apply this framework to coarsened exact matching as well as matching using the propensity score and suggest how to apply it to other algorithms. Simulation studies are used to evaluate the procedures.
翻译:我们提出了一个评估匹配程序的新视角,通过考虑其属于的功能类别的复杂性来评估匹配程序。 在这个视角下,我们通过有限的样本浓度不平等,为匹配后共变平衡提供理论保障。我们应用这个框架来粗化精确匹配,并使用偏差分进行匹配,并就如何将其应用于其他算法提出建议。我们使用模拟研究来评估程序。