Feature Selection (FS), such as filter, wrapper, and embedded methods, aims to find the optimal feature subset for a given downstream task. However, in many real-world practices, 1) the criteria of FS vary across domains; 2) FS is brittle when data is a high-dimensional and small sample size. Can selected feature subsets be more generalized, accurate, and input dimensionality agnostic? We generalize this problem into a deep differentiable feature selection task and propose a new perspective: discrete feature subsetting as continuous embedding space optimization. We develop a generic and principled framework including a deep feature subset encoder, accuracy evaluator, decoder, and gradient ascent optimizer. This framework implements four steps: 1) features-accuracy training data preparation; 2) deep feature subset embedding; 3) gradient-optimized search; 4) feature subset reconstruction. We develop new technical insights: reinforcement as a training data generator, ensembles of diverse peer and exploratory feature selector knowledge for generalization, an effective embedding from feature subsets to continuous space along with joint optimizing reconstruction and accuracy losses to select accurate features. Experimental results demonstrate the effectiveness of the proposed method.


翻译:筛选、 包装和嵌入方法等特性选择 (FS) 旨在为特定下游任务找到最佳特性子集。 但是,在许多现实世界做法中,1 FS的标准在不同领域之间有差异;2 FS在数据具有高维度和小样本大小时是困难的。 选定特性子集能够更加普及、准确和输入维度是不可知性的吗? 我们将这一问题概括为深层次的特性选择任务,并提出新的视角: 离散特性子集成作为连续嵌入空间优化。 我们开发了一个通用和原则性框架,包括一个深特性子集、准确性评估器、解码器和梯度作为精度优化器。 这个框架实施四个步骤:(1) 特征精确性培训数据编制;(2) 深度特性子集嵌入;(3) 梯度优化搜索;(4) 特征子集重建。 我们开发新的技术洞察力: 强化作为培训数据生成器, 组合各种同级和探索性特征选样知识, 有效地从特性子集入持续空间,同时联合优化重建和准确性损失以选择精确性特征特征特征特征特征特征。</s>

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月25日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员