Early detection of relevant locations in a piece of news is especially important in extreme events such as environmental disasters, war conflicts, disease outbreaks, or political turmoils. Additionally, this detection also helps recommender systems to promote relevant news based on user locations. Note that, when the relevant locations are not mentioned explicitly in the text, state-of-the-art methods typically fail to recognize them because these methods rely on syntactic recognition. In contrast, by incorporating a knowledge base and connecting entities with their locations, our system successfully infers the relevant locations even when they are not mentioned explicitly in the text. To evaluate the effectiveness of our approach, and due to the lack of datasets in this area, we also contribute to the research community with a gold-standard multilingual news-location dataset, NewsLOC. It contains the annotation of the relevant locations (and their WikiData IDs) of 600+ Wikinews articles in five different languages: English, French, German, Italian, and Spanish. Through experimental evaluations, we show that our proposed system outperforms the baselines and the fine-tuned version of the model using semi-supervised data that increases the classification rate. The source code and the NewsLOC dataset are publicly available for being used by the research community at https://github.com/vsuarezpaniagua/NewsLocation.


翻译:在一个新闻中及早发现相关地点对于环境灾害、战争冲突、疾病爆发或政治动荡等极端事件尤其重要。此外,这一发现也有助于推荐系统,以推广基于用户地点的相关新闻。请注意,当相关地点在文本中没有明确提及时,最先进的方法通常无法认出这些地点,因为这些方法依赖于合成识别。相比之下,通过纳入一个知识库并将各实体与其所在地连接起来,我们的系统成功地推断了相关地点,即便在文本中没有明确提及这些地点。为了评估我们的方法的有效性,并由于缺乏这方面的数据集,我们还以黄金标准多语种新闻定位数据集NewsLOC(NewsLOC)为研究界作出贡献。它包含有关地点的说明(及其WikiData ID)以五种不同语言(英语、法语、德语、德语、意大利语和西班牙语)的600+Wikinews文章。通过实验性评估,我们显示我们提议的系统超越了基准和新模式的精细版本,而使用半超版新闻定位/视频的模型使用半超版新闻定位新闻网站。它用于公共数据的比例。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员