Extending a classical theorem of Sperner, we characterize the integers $m$ such that there exists a maximal antichain of size $m$ in the Boolean lattice $B_n$, that is, the power set of $[n]:=\{1,2,\dots,n\}$, ordered by inclusion. As an important ingredient in the proof, we initiate the study of an extension of the Kruskal-Katona theorem which is of independent interest. For given positive integers $t$ and $k$, we ask which integers $s$ have the property that there exists a family $\mathcal F$ of $k$-sets with $\lvert\mathcal F\rvert=t$ such that the shadow of $\mathcal F$ has size $s$, where the shadow of $\mathcal F$ is the collection of $(k-1)$-sets that are contained in at least one member of $\mathcal F$. We provide a complete answer for $t\leqslant k+1$. Moreover, we prove that the largest integer which is not the shadow size of any family of $k$-sets is $\sqrt 2k^{3/2}+\sqrt[4]{8}k^{5/4}+O(k)$.
翻译:在扩展 Sperner 的古典理论时, 我们将整数定性为 $ 美元, 这样在 Boleean lattico $B_ n$ 中存在最大抗链 美元, 即 $[$n] 的电源集 : @% 1, 2,\ dots, n ⁇ 。 作为证据的一个重要成分, 我们开始研究 Kruskal- Katona 理论集的扩展。 对于正数整数 $t 和 $k$, 我们要求哪个整数$ 的属性是 $\ mathcal F $- setcet, 即有 $lvert\ mathcal F\rvert= $, $ $ $ $:\\\ dgcal F$, 的阴影是$(k) $-1) 的集合。 我们为$tleqlant k+_ $1/ 4, 我们为 $__ 美元家族最大的一个规模。 [x_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________