We present a $(1- \varepsilon)$-approximation algorithms for maximum cardinality matchings in disk intersection graphs -- all with near linear running time. We also present estimation algorithm that returns $(1\pm \varepsilon)$-approximation to the size of such matchings -- this algorithms run in linear time for unit disks, and $O(n \log n)$ for general disks (as long as the density is relatively small).
翻译:我们为磁盘交叉图中的最大基点匹配提供了$(1- \ varepsilon) 和$(n\ log n) 的接近线性运行时间。我们还提出了返回$( 1\ pm \ varepsilon) 和$( varepsilon) 和$(n\ log n) 的估算算法,这些算法相当于这种匹配的大小。 这种算法在单盘的线性时间运行,而普通磁盘的算法则是$(只要密度相对较小)。