In recent years, the success of deep learning has inspired many researchers to study the optimization of general smooth non-convex functions. However, recent works have established pessimistic worst-case complexities for this class functions, which is in stark contrast with their superior performance in real-world applications (e.g. training deep neural networks). On the other hand, it is found that many popular non-convex optimization problems enjoy certain structured properties which bear some similarities to convexity. In this paper, we study the class of \textit{quasar-convex functions} to close the gap between theory and practice. We study the convergence of first order methods in a variety of different settings and under different optimality criterions. We prove complexity upper bounds that are similar to standard results established for convex functions and much better that state-of-the-art convergence rates of non-convex functions. Overall, this paper suggests that \textit{quasar-convexity} allows efficient optimization procedures, and we are looking forward to seeing more problems that demonstrate similar properties in practice.


翻译:近些年来,深层学习的成功激励了许多研究人员研究如何优化一般平滑的非康维克斯功能。然而,最近的工作为这一类功能确立了悲观的最坏情况复杂性,这与其在现实世界应用中的优异性表现形成鲜明对比(例如,培训深神经网络 ) 。 另一方面,人们发现,许多受欢迎的非康维克斯优化问题具有某些结构化特性,与共性有某些相似之处。在本论文中,我们研究了\ textit{quasar-convex函数的类别,以缩小理论与实践之间的差距。我们研究了不同场合和不同最佳性标准下第一级方法的趋同性。我们证明,复杂性的上限与为共通性功能设定的标准结果相似,而且远比非康维克斯功能的状态一致率要好得多。总体而言,本文表明, ktextit{quasar-convexity} 允许高效的优化程序,我们期待看到更多在实践中显示类似特性的问题。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
【NeurIPS 2020】生成对抗性模仿学习的f-Divergence
专知会员服务
25+阅读 · 2020年10月9日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
121+阅读 · 2020年3月30日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2020年11月19日
Arxiv
0+阅读 · 2020年11月19日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员