Iterative gradient-based algorithms have been increasingly applied for the training of a broad variety of machine learning models including large neural-nets. In particular, momentum-based methods, with accelerated learning guarantees, have received a lot of attention due to their provable guarantees of fast learning in certain classes of problems and multiple algorithms have been derived. However, properties for these methods hold true only for constant regressors. When time-varying regressors occur, which is commonplace in dynamic systems, many of these momentum-based methods cannot guarantee stability. Recently, a new High-order Tuner (HT) was developed and shown to have 1) stability and asymptotic convergence for time-varying regressors and 2) non-asymptotic accelerated learning guarantees for constant regressors. These results were derived for a linear regression framework producing a quadratic loss function. In this paper, we extend and discuss the results of this same HT for general convex loss functions. Through the exploitation of convexity and smoothness definitions, we establish similar stability and asymptotic convergence guarantees. Additionally we conjecture that the HT has an accelerated convergence rate. Finally, we provide numerical simulations supporting the satisfactory behavior of the HT algorithm as well as the conjecture of accelerated learning.


翻译:在培训包括大型神经网在内的各种机器学习模型时,越来越多地采用基于梯度的算法,特别是,由于在某些类别的问题和多种算法中,以动力为基础的方法具有快速学习的可证实的保证,因此受到了很多关注,因为在某些类别的问题和多重算法中,这些方法的特性可以保证快速学习,但是,这些方法的特性只适用于不断递减的递减者。当发生时间变化的递减者时,许多这些基于动力的方法无法保证稳定性。最近,开发了一个新的高阶图纳(HT),并显示:(1) 时间变化的递减者具有稳定性和无阻趋同性,(2) 不断递减者具有不稳加速学习的保证。这些结果用于产生二次递减功能的线性回归框架。在本文中,我们扩展并讨论该HT的结果,用于一般等离值损失功能。通过利用相近和平稳的定义,我们建立了类似的稳定性和抑制性趋同的聚合保证。此外,我们推测HT的快速加速学习率,从而加速了数字趋同性的行为的加速。

0
下载
关闭预览

相关内容

在数学中,定义在n维区间上的实值函数,如果函数的图上任意两点之间的线段位于图上,称为凸函数。同样地,如果函数图上或上面的点集是凸集,则函数是凸的。
大数据白皮书(2020年), 72页pdf
专知会员服务
59+阅读 · 2020年12月31日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
205+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2021年1月6日
Arxiv
6+阅读 · 2020年10月8日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
大数据白皮书(2020年), 72页pdf
专知会员服务
59+阅读 · 2020年12月31日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
205+阅读 · 2019年9月30日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员