Structure learning of directed acyclic graphs (DAGs) is a fundamental problem in many scientific endeavors. A new line of work, based on NOTEARS (Zheng et al., 2018), reformulates the structure learning problem as a continuous optimization one by leveraging an algebraic characterization of DAG constraint. The constrained problem is typically solved using the augmented Lagrangian method (ALM) which is often preferred to the quadratic penalty method (QPM) by virtue of its convergence result that does not require the penalty coefficient to go to infinity, hence avoiding ill-conditioning. In this work, we review the standard convergence result of the ALM and show that the required conditions are not satisfied in the recent continuous constrained formulation for learning DAGs. We demonstrate empirically that its behavior is akin to that of the QPM which is prone to ill-conditioning, thus motivating the use of second-order method in this setting. We also establish the convergence guarantee of QPM to a DAG solution, under mild conditions, based on a property of the DAG constraint term.


翻译:定向自行车图(DAGs)的结构学习是许多科学工作的一个根本问题。根据NOTARRS(Zheng等人,2018年),通过利用DAG限制的代数特征,将结构学习问题重新定位为连续优化问题,通过利用对DAG限制的代数特征,将结构学习问题重新定位为连续优化问题。受限制问题通常通过扩大Lagrangian方法(ALM)来解决,该方法往往偏向于四级惩罚方法(QPM),因为其趋同结果并不要求惩罚系数达到无限程度,从而避免了不良的调节。在这项工作中,我们审查了ALM的标准趋同结果,并表明在最近为学习DAG的受限制的配方中,没有满足所需的条件。我们从经验上表明,它的行为类似于QPM(QPM),它容易受到不当调节,从而在这种环境下鼓励使用二级惩罚方法。我们还根据DAG限制条件的特性,在较轻的条件下,建立了QPM的趋同性保证。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员