A point cloud serves as a representation of the surface of a three-dimensional (3D) shape. Deep generative models have been adapted to model their variations typically using a map from a ball-like set of latent variables. However, previous approaches did not pay much attention to the topological structure of a point cloud, despite that a continuous map cannot express the varying numbers of holes and intersections. Moreover, a point cloud is often composed of multiple subparts, and it is also difficult to express. In this study, we propose ChartPointFlow, a flow-based generative model with multiple latent labels for 3D point clouds. Each label is assigned to points in an unsupervised manner. Then, a map conditioned on a label is assigned to a continuous subset of a point cloud, similar to a chart of a manifold. This enables our proposed model to preserve the topological structure with clear boundaries, whereas previous approaches tend to generate blurry point clouds and fail to generate holes. The experimental results demonstrate that ChartPointFlow achieves state-of-the-art performance in terms of generation and reconstruction compared with other point cloud generators. Moreover, ChartPointFlow divides an object into semantic subparts using charts, and it demonstrates superior performance in case of unsupervised segmentation.
翻译:点云可以代表三维( 3D) 形状的表面。 深基因模型已经进行了修改, 以模型显示其变异, 通常使用球形的一组潜伏变量的地图。 然而, 先前的方法没有多少注意点云的表层结构, 尽管连续的地图无法显示不同数目的洞和交叉点。 此外, 点云通常由多个子部分组成, 也很难表达 。 在这次研究中, 我们提出了一个基于 3D 点云的以流为基础的基因模型, 带有多个潜在标签的3D 点云。 每个标签被指定为不受监督的点 。 然后, 一个以标签为条件的地图被指定为一个点云的连续子组, 类似于一个元件的图表 。 这使我们提议的模型能够以清晰的边界来保存表层结构, 而以前的计算方法往往产生模糊点云, 并且不会产生洞。 实验结果显示, ChartpointFlow 在生成和重建方面达到与其它点云源发生者相比的状态。 。 此外, 图表显示, 高端图显示 和高端的图像 显示 。