Since the celebrated PPAD-completeness result for Nash equilibria in bimatrix games, a long line of research has focused on polynomial-time algorithms that compute $\varepsilon$-approximate Nash equilibria. Finding the best possible approximation guarantee that we can have in polynomial time has been a fundamental and non-trivial pursuit on settling the complexity of approximate equilibria. Despite a significant amount of effort, the algorithm of Tsaknakis and Spirakis \cite{TS08}, with an approximation guarantee of $(0.3393+\delta)$, remains the state of the art over the last 15 years. In this paper, we propose a new refinement of the Tsaknakis-Spirakis algorithm, resulting in a polynomial-time algorithm that computes a $(\frac{1}{3}+\delta)$-Nash equilibrium, for any constant $\delta>0$. The main idea of our approach is to go beyond the use of convex combinations of primal and dual strategies, as defined in the optimization framework of \cite{TS08}, and enrich the pool of strategies from which we build the strategy profiles that we output in certain bottleneck cases of the algorithm.
翻译:自从在双曲游戏中为Nash equilibria 庆祝的 PPAD 完整结果以来,一长串研究侧重于计算美元和纳什 equilibraria 的多元时间算法(0.3393 ⁇ delta),近似保证$是过去15年的艺术状态。在本文件中,我们提议对Tsaknakis-Spirakis 算法进行新的改进,从而产生一个计算约合平衡的复杂程度的多元和非三角算法。尽管付出了大量努力,但Tsaknakis 和 Spirakis\cite{TS08} 的算法和Spirakis specials的算法(0.3393 ⁇ delta)仍然是过去15年的艺术状态。我们建议对Tsaknakis-Spirakis-Spirakis 算法进行新的改进,从而对任何恒定的 $(frac{1 ⁇ 3 ⁇ 3 ⁇ delta>0美元) 和 Spiraskal sqol scal scal scal scruphase fistrapstrapstract cas press press press (我们定义的原始战略) press) 框架和双级战略中,这是我们确定的某些算法框架和双级战略的精制。