项目名称: 禾谷镰刀菌TRI6相关调控因子影响DON产生的分子机制

项目编号: No.31271989

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 农业科学

项目作者: 王晨芳

作者单位: 西北农林科技大学

项目金额: 80万元

中文摘要: 小麦赤霉病是世界性真菌病害,不仅造成小麦严重减产、品质降低,更为重要的是受害小麦粒含真菌毒素DON,可引起人畜中毒。虽然禾谷镰刀菌中参与DON合成的TRI基因已较清楚,但对赤霉病菌毒素产生的总体调控机制缺乏了解,多种环境因子都可影响DON在小麦中的积累,但相关的调控基因及作用机制尚不清楚。TRI6是调控TRI基因的重要转录因子,项目拟全面分离鉴定与TRI6直接互作的基因并进行功能分析;同时对TRI6启动子的特征进行系统分析并分离鉴定与TRI6启动子结合的调控因子;对可能调控TRI6表达并参与碳氮代谢和pH信号的关键调控因子CRE1、ARE1和PAC1进行分析,以明确其与TRI6的作用关系以及碳氮代谢与pH信号在DON产生中的调控作用;并明确这些毒素合成调控因子之间的相互作用关系,从而进一步了解禾谷镰刀菌中DON产生和积累的调控机制,为小麦赤霉病的防治与减轻毒素污染新策略的建立提供科学依据。

中文关键词: 小麦赤霉病;禾谷镰刀菌;TRI6相关转录因子;DON合成;调控机制

英文摘要: Wheat scab or head blight caused by Fusarium graminearum is one of the most important diseases of wheat and barley worldwide. It not only causes significant yield losses but also results in the contamination of infected kernels with mycotoxins, such as deoxynivalenol (DON) that are harmful to human and animals. DON is also an important virulence factor in F. graminearum. Although the trichothecene biosynthetic gene clusters have been studied extensively, the global regulation of DON synthesis in F. graminearum are not well characterized. Various environmental factors are known to influence DON accumulation in infected wheat tissues, but the underlying mechanisms are not clear. In this study, we aim to determine regulatory mechanisms that control DON production and accumulation in F. graminearum. Genes that are directly interacting with TRI6, the key transcription factor regulating TRI gene expression, will be identified and characterized. Transcription factors regulating TRI6 expression and promoter elements of TRI6 also will be characterized. We also propose to determine the role of nitrogen and carbon metabolisms and pH signal in DON synthesis by functional characterization of the ARE1, CRE1 and PAC1 genes, the three key regulators of N and C metabolisms and pH signal, respectively. In addition, the interactio

英文关键词: wheat head blight;Fusarium graminearum;transcription factors functional related to TRI6;DON synthesis;regulatory mechanism

成为VIP会员查看完整内容
0

相关内容

AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
40+阅读 · 2022年2月28日
【WWW2022】再思考图卷积网络的知识图谱补全
专知会员服务
34+阅读 · 2022年2月15日
【NeurIPS2021】InfoGCL:信息感知图对比学习
专知会员服务
37+阅读 · 2021年11月1日
专知会员服务
13+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年4月18日
基于图的推荐中的负采样原则 | 论文荐读
学术头条
1+阅读 · 2022年3月15日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
人工智能预测RNA和DNA结合位点,以加速药物发现
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员