Task-space Passivity-Based Control (PBC) for manipulation has numerous appealing properties, including robustness to modeling error and safety for human-robot interaction. Existing methods perform poorly in singular configurations, however, such as when all the robot's joints are fully extended. Additionally, standard methods for constrained task-space PBC guarantee passivity only when constraints are not active. We propose a convex-optimization-based control scheme that provides guarantees of singularity avoidance, passivity, and feasibility. This work paves the way for PBC with passivity guarantees under other types of constraints as well, including joint limits and contact/friction constraints. The proposed methods are validated in simulation experiments on a 7 degree-of-freedom manipulator.
翻译:用于操纵的任务空间被动控制(PBC)有许多具有吸引力的特性,包括建模错误的稳健性以及人-机器人互动的安全性。但是,现有方法在单词配置方面效果不佳,例如,所有机器人的接合均完全扩展。此外,受限制的任务空间控制(PBC)的标准方法只有在制约因素不活跃的情况下才保证被动。我们提出了一个基于连接-优化的控制计划,为单词避免、被动和可行性提供保障。这项工作为建设和平委员会铺平了道路,在其它类型的制约下有被动保障,包括联合限制和接触/接触限制。拟议的方法在7度自由操纵器的模拟实验中得到验证。