Real-world Super-Resolution (SR) has been traditionally tackled by first learning a specific degradation model that resembles the noise and corruption artifacts in low-resolution imagery. Thus, current methods lack generalization and lose their accuracy when tested on unseen types of corruption. In contrast to the traditional proposal, we present Robust Super-Resolution (RSR), a method that leverages the generalization capability of adversarial attacks to tackle real-world SR. Our novel framework poses a paradigm shift in the development of real-world SR methods. Instead of learning a dataset-specific degradation, we employ adversarial attacks to create difficult examples that target the model's weaknesses. Afterward, we use these adversarial examples during training to improve our model's capacity to process noisy inputs. We perform extensive experimentation on synthetic and real-world images and empirically demonstrate that our RSR method generalizes well across datasets without re-training for specific noise priors. By using a single robust model, we outperform state-of-the-art specialized methods on real-world benchmarks.


翻译:传统上,通过首先学习类似于低分辨率图像中噪音和腐败文物的具体降解模型(SR)来应对真实世界超级分辨率(RSR),这种模型类似于低分辨率图像中的噪音和腐败文物。因此,目前的方法缺乏一般化,在对隐形腐败类型进行测试时失去准确性。与传统提案相比,我们提出了强效超级分辨率(RSR),这种方法利用对抗性攻击的概括性能力来应对真实世界SR。我们的新框架在开发真实世界SR方法方面带来了范式转变。我们使用对抗性攻击来创建针对模型弱点的难点例子。之后,我们在培训中使用这些对抗性例子来提高模型处理噪音投入的能力。我们广泛实验合成和现实世界图像,并用经验证明我们的RSR方法在不为特定噪音前的再培训的情况下,对数据集进行了广泛的综合。我们使用单一的强势模型,超越了现实世界基准方面的先进专门方法。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
FIGR: Few-shot Image Generation with Reptile
Arxiv
5+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员