The research of adversarial attacks in the text domain attracts many interests in the last few years, and many methods with a high attack success rate have been proposed. However, these attack methods are inefficient as they require lots of queries for the victim model when crafting text adversarial examples. In this paper, a novel attack model is proposed, its attack success rate surpasses the benchmark attack methods, but more importantly, its attack efficiency is much higher than the benchmark attack methods. The novel method is empirically evaluated by attacking WordCNN, LSTM, BiLSTM, and BERT on four benchmark datasets. For instance, it achieves a 100\% attack success rate higher than the state-of-the-art method when attacking BERT and BiLSTM on IMDB, but the number of queries for the victim models only is 1/4 and 1/6.5 of the state-of-the-art method, respectively. Also, further experiments show the novel method has a good transferability on the generated adversarial examples.


翻译:在过去几年中,文本领域对对抗性攻击的研究吸引了许多兴趣,并提出了许多攻击成功率高的方法。然而,这些攻击方法效率低下,因为在起草案文对抗性例子时,这些攻击方法要求受害者模型进行大量查询。在本文中,提出了一个新的攻击模式,其攻击成功率超过了基准攻击方法,但更重要的是,其攻击效率大大高于基准攻击方法。新方法通过用四个基准数据集攻击WordCNN、LSTM、BilsTM和BERT, 进行了经验评估。例如,在攻击生物和生物和毒素武器数据库时,其攻击成功率比最新方法高出100 ⁇ 。但是,对受害者模型的查询次数分别仅为最新方法的四分之一和1/6.5。此外,进一步实验显示,新方法在生成的对抗性例子中具有良好的可转移性。

0
下载
关闭预览

相关内容

专知会员服务
49+阅读 · 2021年9月9日
专知会员服务
44+阅读 · 2021年1月18日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
专知会员服务
45+阅读 · 2020年10月31日
生成对抗网络GAN的发展与最新应用
专知会员服务
127+阅读 · 2020年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员