Deep learning models are vulnerable to adversarial examples and make incomprehensible mistakes, which puts a threat on their real-world deployment. Combined with the idea of adversarial training, preprocessing-based defenses are popular and convenient to use because of their task independence and good generalizability. Current defense methods, especially purification, tend to remove ``noise" by learning and recovering the natural images. However, different from random noise, the adversarial patterns are much easier to be overfitted during model training due to their strong correlation to the images. In this work, we propose a novel adversarial purification scheme by presenting disentanglement of natural images and adversarial perturbations as a preprocessing defense. With extensive experiments, our defense is shown to be generalizable and make significant protection against unseen strong adversarial attacks. It reduces the success rates of state-of-the-art \textbf{ensemble} attacks from \textbf{61.7\%} to \textbf{14.9\%} on average, superior to a number of existing methods. Notably, our defense restores the perturbed images perfectly and does not hurt the clean accuracy of backbone models, which is highly desirable in practice.


翻译:深层次的学习模式很容易受到对抗性例子的伤害,并造成无法理解的错误,从而威胁到其真实世界的部署。结合对抗性培训的想法,以预处理为基础的防御由于其任务的独立性和良好的可概括性而受欢迎和方便使用。当前的防御方法,特别是净化,往往通过学习和恢复自然图像而消除“噪音”。然而,与随机噪音不同,在模拟培训期间,对抗模式更容易被过度使用,因为它们与图像有很强的关联。在这项工作中,我们提出一个新的对抗性净化计划,将自然图像的分解和对立性扰动作为预处理的防御。通过广泛的实验,我们的防御被证明是普遍的,对看不见的强烈对抗性攻击提供了重要的保护。它降低了最先进的“textbf{ensemble”攻击的成功率,从\ textb{61.7\\\\\\\\\\ textbf{149.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【DeepMind】多模态预训练模型概述,37页ppt
专知会员服务
93+阅读 · 2021年7月2日
专知会员服务
61+阅读 · 2021年6月22日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
39+阅读 · 2020年10月13日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年10月22日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员